Dream & Objective of Okabe Lab.

Innovational Technology to Transform Rare Metals into Common Metals

Development of innovative materials processing
Development of a new rare metal production process
Ti ore or UGI

Innovative

New process for producing highly pure metallic titanium directly from titanium ore

rare metal processing **Development of a new** recycling process involving scrap (or waste materials) combination _ Scrap Scrap 2 Valuable materials

Environmentally sound

Idea to transform scrap into valuable materials

Contribution to society by the development of an innovative and environmentally sound material processing

Resource Recovery and Materials Process Engineering Laboratory

2005/11/15 Toru H. Okabe 0511_012_Okabe_Dream_1.ppt Okabe Lab.

012_Dream_e 2005_Okabe_Lab_e

New Titanium Production Process

High-speed Titanium Production Process Using Titanium Subhalides Environmentally Sound Process Utilizing Titanium Scraps

High-speed Ti production process

Ti production process using Ti subhalides ($TiCl_x$, x = 2, 3)

$TiCl_4(l, g) + Mg(l)$ $TiCl_4(l, g) + Ti(s, g)$	$f(s, g) = \text{TiCl}_{x}(s, l) + \text{MgCl}_{2}(l)$ scrap) = TiCl_{x}(s, l)				
TiCl _x (s, l) + Mg(l	$, g) \qquad Ti(s) + MgCl_2(l, g)$				
Step1: Production and enrichment of TiCl _x					
	Utilization of Ti scraps				
	── MgCl₂−TiCl _x ── TiCl _x				
Ļ					
Step2: High-spee	ed reduction of TiCl _x				
	High-speed				
0000000000					
O) 000000000000000000000000000000000000					
	<mark>ଝ⊖ TiCl_x+</mark> Mg (+MgCl ₂ +Ti)				
	High-purity Ti can be produced.				
Step3: Removal	of reaction product MgCl ₂				
Mg, MgCl ₂	Ti vessel together with product Ti can be directly melted without crushing.				
ll ▼ Mg, MgCl₃					

Features and experimental result

Comparison of Kroll process and new process

	Kroll process	New process		
Process type	Batch-type, limited speed	(Semi-)Continuous, high-speed		
Feed material	$TiCl_4(l, g)$	TiCl ₂ , TiCl ₃ (s, l)		
Heat of reduction	High (∆ <i>H</i> = –434 kJ molTi)	Low (∆ <i>H</i> = −94 ~ −191 kJ molTi)		
Reactor material	Mild steel (Iron contamination unavoidable)	Titanium (No iron contamination)		
Reactor size	Large (Crush and melt)	Small (No crush and direct melt)		
Flux, sealant	Not used	Ti, MgCl ₂		
Common features	Magnesiothermic reduction of chlorides Removal of MgCl ₂ and Mg from Ti sponge by vacuum distillation Production of high-purity Ti with low oxygen content			

Experiment for the magnesiothermic reduction of TiCl₃

Ti with 99.2% purity was efficiently obtained using Ti vessel.

New technologies for this process are under development.

Feasibility of new Ti production process based on the magnesiothermic reduction of Ti subhalides using Ti vessel was demonstrated.

Resource Recovery and Materials Process Engineering Laboratory

2005/11/15 Osamu Takeda 0511_011_Ti_subhalide.ppt

Okabe Lab.

011_Ti_e 2005_Ti_subhalide

New Niobium/Tantalum Production Process

Electrochemical Pulverization of Bulk Metal for Producing Fine and Highly Pure Ta and Nb Powders

Background & new process

Background

Tantalum (Ta) capacitors have the largest capacity per unit volume, and they are thermally stable. The anode of a Ta capacitor is fabricated using Ta powder, which is very expensive primarily due to limited Ta resources.

Graphite Ag|Solder

Recent trend in the miniaturization of electrical appliances has increased the demand for high performance Ta capacitors. If the abundant and cheap Nb can substitute Ta for capacitors, Nb capacitor has the potential to become the next generation capacitor.

<u>New process:</u> Electrochemical Pulverization (EP)

Experimental & results -Experimental apparatus

Resource Recovery and Materials Process Engineering Laboratory

2005/11/15 Boyan Yuan 0511_010_Nb_Ta_EP.ppt

Okabe Lab.

010_Nb_Ta_e.ppt 2005_Nb_Ta_EP

New Titanium Production Process

Iron Removal from Titanium Ore by Selective Chlorination and Effective Utilization of Chloride Wastes and Titanium Scrap **Development of New Environmentally Sound Process** New process using low-cost low-grade Ti ore The research objective is to develop MCI. Ti scrap Low-grade Ti ore FeCl_x a new environmentally sound process (FeTiO_x) (Cl₂) (+ AICl₃) (Ti) using low-cost low-grade Ti ore. II: Chlorine Recovery I: Selective Chlorination FeCl, TiCl₄ Upgraded Ti ore Fe Ti feed with low Fe concentration obtained (TiO₂) (+ AICl₂...) by selective chlorination can be reduced **III: Ti smelting** to metallic Ti in Kroll process or other new (e.g., Kroll process) Ti smelting processes. Ti FeCl. (+ AICI3...) Thermodynamic analysis and experimental I: Selective Chlorination II: Chlorine Recovery Fe-CI-O & Ti-CI-O Systems @ 1100 K Fe-Ti-Cl System @ 1100 K (atm) Chlorine in FeCl, can be recovered as TiCl₄ (g) by using metallic Ti. 0 Potential region for selective chlorination partial pressure, log $\rho_{0_2}^{-1}$ $\operatorname{Cl}_2(g)_{\cdot}$ Feci of Fe $\mathbf{CO}(g) / \mathrm{CO}_2(g)$ eq. $\mathbf{C}(s) / \mathrm{CO}(g)$ eq. TIC14 (8) 0 (3) TICIS log p_{cl}, (atm) -20 $H_2O(g) / HCl(g)$ eq. TiC12(5) -40 Fe (s) FeTi (s) Ti (s) $CaO(s) / CaCl_2(l) eq.$ -60 60 Oxygen -60 -40 20 109 are -40 10g ari -60_40 -30 -20 -10 0 -20 Chlorine partial pressure, log p_{Cl_2} (atm) Chemical potential diagram for Fe-Cl-O (dotted line) and Ti-Cl-O systems (solid line) @1100 K. Chemical potential diagram for Fe-Ti-Cl system @1100 K. $FeCl_2(l, g) + Ti(s)$ Fe (s) + TiCl₄ (g) $H_2O(g) + CaCl_2(s, l)$ FeO_x (FeTiO_x, s) + HCl (g) HCl(g) + CaO(s)FeCl_x (g) + H₂O (g) Deposits obtained after Exp. Quartz tube Graphite crucible Vacuum pump Fe was Deposits ł removed obtained Ar gas \leftrightarrow : from Ti after Exp. Vacuum pump Chloride ore. Stainless condenser Heater steel susceptor Silicone rubber plug Gas trap (NaOH) Mixture (FeCl₂ + Ti powder) Graphite Utilization crucible Effective of lowutilization of chloride wastes and Ti scrap is Chlorination Mixture grade Ti [FeTiO_x] reactor ōre possible. RF coil Decrease in Quartz tube Environmental 5 cm burden is decreased. production Ceramic tube cost of Ti 10 cm $N_2 + H_2O$ Ti feed material was produced, at the same Fe was selectively removed from Ti ore. time, chlorine in FeCl, was recovered. **Resource Recovery and Materials Process Engineering Laboratory**

2005/11/15 Haiyan Zheng 0511_009_Ti_scrap.ppt

Okabe Lab.

009_Ti_e 2005_Ti_scrap

Efficient Recovery Process of Precious Metals

New Environmentally Sound Recovery Process of Precious Metals Using Reactive Metal and Chloride Vapor Treatment

2005/11/15 Chihiro Ohkawa 0511_008_PGM_scrap.ppt

Okabe Lab.

008_PGM_e 2005_PGM_scrap

New Ti Production Process Directly from Ti Ore

Development of New Ti Production Process Using Low-grade Ti Ore Selective Chlorination and Fe Removal by Electrochemical Method

Experimental apparatus and result Experimental apparatus for Fe removal Advantage of Potential lead (Ni wire) carbon crucible Stainless steel tube Ar inlet Rubber plug Inert at high Wheel flance anodic potential Reaction chamber CI potential can Thermocouple be increased. Heating element 00000000 Mild steel crucible (Cathode) Ni electrode Carbon crucible (Anode) Fe removal by selective Ti ore (TiO₂ + FeO_x) chlorination is Molten salt (CaCl₂) possible. Ceramic insulator Carbon can not be used for Ti reduction electrode (cathode).

Experimental result

Table Analytical results of Ti ore and residue after selective chlorination.

	Concentration of element <i>i</i> , C_i (mass %) ^a			Fe / Ti (%)
	Ti	Fe	Са	Mass ratio
Before exp. ^b After exp.	42.62 ↓ 47.22	48.72 ↓ 3.40	0,33 ↓ 47.92	(114.8 ↓ 7.2

a: Determined by XRF analysis. b: Ilmenite (FeTiO_x) from China.

Technique for removing Fe down to ppm level is currently under investigation. Fe in Ti ore was successfully removed. Fe removal ratio should be improved.

Selective chlorination and Fe removal in Ti ore by electrochemical method was demonstrated.

Future work

Development of new smelting process for producing metallic Ti directly from Ti ore after Fe removal.

Resource Recovery and Materials Process Engineering Laboratory

2005/11/15 Isao Obana 0511_007_Ti.ppt

investigation.

Okabe Lab.

007_Ti_e 2005_Ti

New Scandium Production Process

New Production Process of Very Scarce Scandium Production of AI-Sc Alloy by Alloying with AI after Reduction of Sc_2O_3

What is Scandium?

Scandium (Sc) is classified as a rare earth metal (RE) as well as yttrium (Y) and lanthanid.

Atomic number	21 light me	tal
Atomic weight	44.96	Price of Sc
Density (g/cm ³)	2.99	is higher
Melting point ()	1541	than those of
Clarke number (ppm)	5.5 (50th)	Pt and Au.
Price (¥/g)	4,000 ~ 30,000	

There is no commercial Sc ore deposits specialized in Sc production, because of scarcity of Sc in the earth's crust.

Sc is currently recovered from the by-product of U or W smelting process.

Recently Sc is focused as a by-product of new Ni production process.

Main application of Sc

Conventional production process :

 $2 \operatorname{ScF}_3 + 3 \operatorname{Ca}$ $2 \operatorname{Sc} + 3 \operatorname{CaF}_2$ Because metallic Sc is chemically reactive, recovery of Sc by leaching process is difficult.

Sc can be extracted and separated by alloying with collector metal such as Al.

Research Plan (I): Calciothermic reduction

2 ScF₃ + 6 Al + 3 Ca 2 Al₃Sc (or Al-Sc(l) alloy) + 3 CaF₂

Research Plan (II): Molten Salt Electrolysis

Development of new process for producing Sc or Al-Sc alloy directly from Sc_2O_3

Resource Recovery and Materials Process Engineering Laboratory

2005/11/15 Masanori Harata 0511_006_Sc.ppt

Okabe Lab.

006_Sc_e 2005_Sc

New Production Process of Nb and Ta for Capacitors

Production of Nb for Capacitors by Preform Reduction Process

Resource Recovery and Materials Process Engineering Laboratory

2005/11/15 Kohei Fujita (Junichi Kubo) 0511_005_Nb_Ta_PRP.ppt

Okabe Lab.

005_Nb_Ta_e 2004_Nb_Ta_PRP

New Titanium Production Process (PRP)

Conversion of Ti into Common Metal by Process Innovation

Resource Recovery and Materials Process Engineering Laboratory

2005/11/15 Mashimo, Ito (Zheng) 0511_004_Ti_PRP.ppt Okabe Lab.

004_Ti_e 2004_Ti_PRP

New Titanium Production Process (EMR)

Research on Innovative Technology and New Production Process of Titanium Conversion of Resource Abundant Rare Metal into Common Metal

[×] Huge exothermmic reaction

Homogeneous Ti powder free of Cu was obtained even though

Resource Recovery and Materials Process Engineering Laboratory

2005/11/15 Takashi Abiko (Isao Obana) 0511_003_Ti_EMR.ppt

Okabe Lab.

003_Ti_e 2004_Ti_EMR

[×] Complicated cell structure Complicated process

Recycling Process for Tantalum

New Environmentally Sound Process for Recovery of Tantalum from High Performance Capacitor

Features of Ta capacitor Recycling of Tantalum Structure of Ta capacitor Ta capacitor was oxidized at elevated temperature. Fireproof epoxy resin After oxidation, Ta electrode Polymer containing SiO₂ maintained its original shape, while fireproof epoxy resin was Sintered Ta electrode converted into powder (40 mass%) consisting SiO₂. After Oxidation Fe and Ni terminals were Terminal separated by magnetic Ni, Fe, or Cu separation. Separated e. Ni termina Schematic illustration of its interior After magnetic Ta₂O₅ (dielectric) Ta (anode) Anode separation lead Minus layer Powder containing SiO₂ Plus lead was mechanically separated. MnO₂ (cathode) Ag Ag (solder) After sieving Graphite After crushing, Cu terminal was separated by sieving. **Cross section of Ta electrode** Ta powder (anode) Ta lead (anode) Separated Cu terminal Ta₂O₅ (dielectric) MnO₂ (cathode) After leaching Impurities were removed by leaching with acid, and Capacitor Cross section Ta was recovered as Ta₂O₅. EM image Sintered Ta powder works as electrode. Ta with purity educe of 99% was · Capacitance per unit volume higher than those of other capacitors High performance obtained. · High thermal stability capacitor Ta is scarce and expensive rare metal. **Recovery process of Ta from Development of recovery process** of Ta from capacitor is important. capacitor was established.

Resource Recovery and Materials Process Engineering Laboratory

2005/11/15 Kunio Mineta (O.T.) 0511_002_Ta_scrap.ppt Okabe Lab.

002_Ta_e 2003_Ta_scrap

New Production Process of Rare Metal

Development of New Production Process for Conversion of "Rare Metal" into "Common Metal"

2005/11/15 Abiko, Oda (O.T.) 0511_001_Ti_EMR_PRP.ppt Okabe Lab.

001_Ti_e 2003_Ti_EMR_PRP