

## **Dry Recycling Process of Rare Earth Elements** from Alloy Magnets

Keigo Nishimura<sup>1</sup>, Toru H. Okabe<sup>2</sup> <sup>1</sup>Freshman, Division of The College of Arts and Sciences, The University of Tokyo, Japan; <sup>2</sup>Institute of Industrial Science, The University of Tokyo, Japan.



|             |             |             | liat        | nt P        | FE           |              | Mid          | dle          | DI            | F           |                | eav          | VP          | FF          |             |       |            |
|-------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|---------------|-------------|----------------|--------------|-------------|-------------|-------------|-------|------------|
| Actini      | id          | AC (227)    | Th<br>232.0 | Pa<br>231.0 | U<br>238.0   | Np<br>(237)  | Pu<br>(239)  | Am<br>(243)  | Cm<br>(247)   | Bk<br>(247) | Cf<br>252)     | ES<br>(252)  | Fm<br>(257) | Md<br>(258) | NO<br>(259) | ļ     |            |
| ahth        | anid        | La<br>138.9 | Ce<br>140.1 | Pr<br>140.9 | Nd<br>144.2  | Pm<br>(145)  | Sm<br>150.4  | Eu<br>152.0  | Gd<br>157.3   | Tb<br>158.9 | Dy<br>162.5    | HO<br>164.9  | Er<br>167.3 | Tm<br>168.9 | Yb<br>173.0 |       |            |
| (200)       | (440)       | -           |             |             | -            |              |              |              |               |             |                | - <b>N</b> / | 58          | 60          |             |       |            |
| Fr          | Ra          | Lr          | Rf          | Db          | Sg           | Bh           | HS           | Mt           |               |             |                |              |             |             |             |       |            |
| 132.9       | 157.5       | 175         | 1/8.5       | 180.9       | 183.8<br>106 | 186.2<br>107 | 190.2<br>108 | 192.2<br>109 | 195.1         | 197.0       | 200.6          | 204.4        | 207.Z       | 209.0       | (210)       | (210) | (272       |
| Cs          | Ba          | Lu          | Hf          | Та          | W            | Re           | Os           | Ir           | Pt            | Au          | Hg             | TI           | Pb          | Bi          | Po          | At    | R          |
| 85.47<br>55 | 87.62<br>56 | 88.91<br>/1 | 91.22<br>72 | 92.91<br>73 | 95.94<br>74  | (99)<br>75   | 101.1        | 102.9        | 106.4         | 107.9<br>79 | 112.4<br>80    | 114.8<br>81  | 118.7<br>82 | 121.8<br>83 | 127.6<br>84 | 126.9 | 131.       |
| Rb          | Sr          | Y           | Zr          | Nb          | Мо           | Тс           | Ru           | Rh           | Pd            | Ag          | Cd             | In           | Sn          | Sb          | Те          | 1     | Xe         |
| 39.10<br>37 | 40.08       | 44.96<br>39 | 47.87       | 50.9<br>41  | 52.00<br>42  | 54.94<br>43  | 55.85        | 58.93<br>45  | 58.69<br>46   | 63.54       | 65.39<br>48    | 69.72<br>49  | 72.61       | 74.92       | 78.96<br>52 | 79.90 | 83.8<br>54 |
| К           | Ca          | Sc          | Ti          | V           | Cr           | Mn           | Fe           | Co           | Ni            | Cu          | Zn             | Ga           | Ge          | As          | Se          | Br    | K          |
| 19          | 24.31       | 21          | 22          | 2           | 24           | 25           | 26           | 27           | 28            | 29          | 30             | 26.98        | 32          | 30.97       | 32.07       | 35.45 | 39.9       |
| Na          | Mg          | 1           |             | 1           |              |              |              |              |               |             |                | A            | Si          | Ρ           | S           | CI    | A          |
| 11          | 9.012       |             | 1           | 1           |              |              |              |              |               |             |                | 10.81        | 12.01       | 14.01       | 16.00       | 19.00 | 18         |
| Li          | Be          |             | /           |             |              |              |              |              |               |             |                | В            | С           | N           | 0           | F     | Ne         |
| 3           | 4           |             |             | Λ           |              |              |              |              |               |             |                | 5            | ь           | 1           | 8           | a     | 10         |
| H           |             |             |             | Ra          | ire e        | arth         | 1 ele        | eme          | nts           | (RE         | E)             |              |             |             |             |       | He         |
| 1           | 1           |             |             | 1000        |              |              |              |              | in the second |             | and the second |              |             |             |             |       | 2          |







- Not any highly toxic waste

| Composition, $C_i$ (mass%) |      |      |      |  |  |  |  |
|----------------------------|------|------|------|--|--|--|--|
|                            | Mg   | Fe   | Nd   |  |  |  |  |
| A                          | 0.82 | 96.1 | 3.07 |  |  |  |  |
| В                          | 1.11 | 93.7 | 5.19 |  |  |  |  |
| С                          | 0.64 | 92.6 | 6.75 |  |  |  |  |

| Result in Mg phase         |       |      |       |  |  |  |  |  |
|----------------------------|-------|------|-------|--|--|--|--|--|
| Composition, $C_i$ (mass%) |       |      |       |  |  |  |  |  |
|                            | Mg    | Fe   | Nd    |  |  |  |  |  |
| А                          | 62.65 | 0.87 | 35.79 |  |  |  |  |  |
| В                          | 62.38 | 0.00 | 36.97 |  |  |  |  |  |
| C                          | 53.35 | 0.35 | 45.41 |  |  |  |  |  |

Keigo Nishimura is expert of Taido, martial arts.