

Development of Novel Recycling Techniques for Nickel-based Superalloy Scraps

Ryohei Yagi^{1,2} (Okabe Lab)

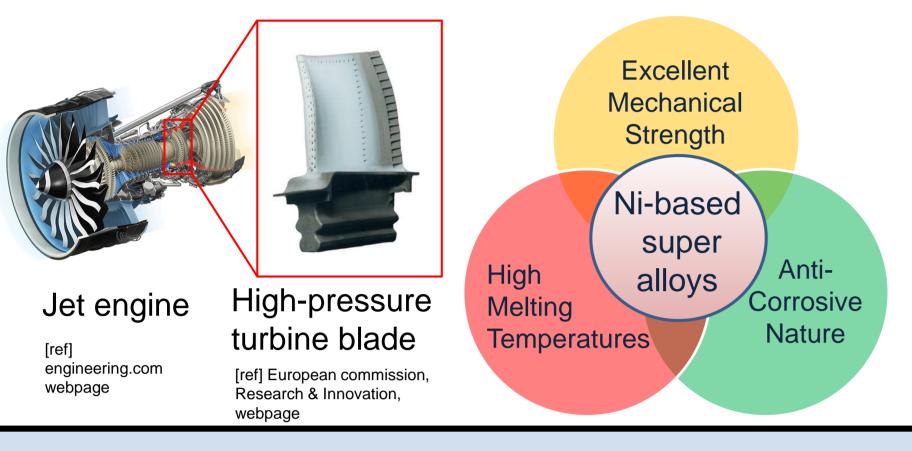
¹Department of Material Engineering, Graduate School of Engineering, The University of Tokyo ²Institute of Industrial Science, The University of Tokyo

Introduction

Future demand of airplanes

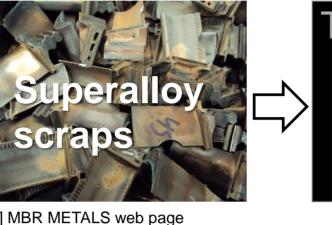
Unit of airplanes in service in year 2015, <i>U</i> 1	Future demand of airplanes in year 2035, U ₂	Percentage increase in 2035, <i>X_i</i> (%)	Demand of airplanes is expected to be double increase in
22,510	45,240	201	the next 20 years

Values of elements in Ni-based Superalloy


Element,	Standard alloy	Value of the element	Rate of value of
Liement,	composition,	in 1 kg alloy,	the element
I	C _i (mass%)	<i>p</i> ' _i / US\$/kg	<i>r</i> _i (%)
Ni	61.7	7.3	6.6
Со	9.0	2.6	2.4
Cr	6.5	0.1	0.1
Та	6.5	15.3	14.0
W	6.0	2.3	2.1
AI	5.6	0.1	0.1
Re	3.0	81.0	73.9
Ti	1.0	0.1	0.1
Мо	0.6	0.1	0.1
Hf	0.1	0.6	0.6
	Tot	al 109.6	

Ref) T. D. Kelly, and G. R. Matos: "Historical statistics for mineral and material commodities in the United States: U.S. Geological Survey Data Series 140", *U.S. Geological Survey*, (2014).

Conventional recycling process


Process	Description	Disadvantage
Remelting	High quality scraps are remelted for superalloy production	 Contaminated scraps cannot be recycled by this process, owing to the possible impurities that might be found in the superalloy ingot Quality control is difficult
Cascade use	Scrap is downgraded for use in stainless steel and low grade superalloy	 Refractory metals such as Re and Ta cannot be recovered and/or recycled
Acid dissolution	Uses aqueous solutions to dissolve superalloy	 × Energy-consuming pretreatments are required × Generation of toxic aqueous waste solutions × Long processing time

Nickel (Ni)- based superalloy turbine blade

A superalloy contains rare (scarce) and expensive "refractory metals" such as Rhenium (Re), Tungsten (W) and Tantalum (Ta) for their high-temperature strength.

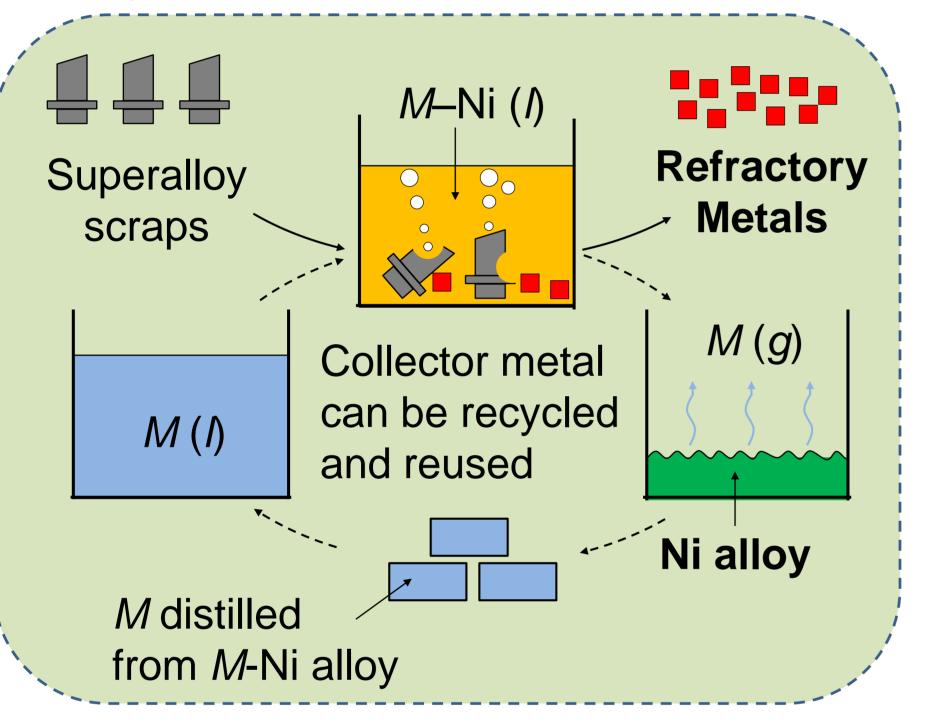
The recovery of refractory metals is important

ef] MBR METALS web page ttp://mbrmetals.com products/rhenium-containing-solid-scrap.html

[ref] Periodictable.com web page http://periodictable.com/index.html

New recycling process for superalloy

A new environmentally sound recycling process has to be developed

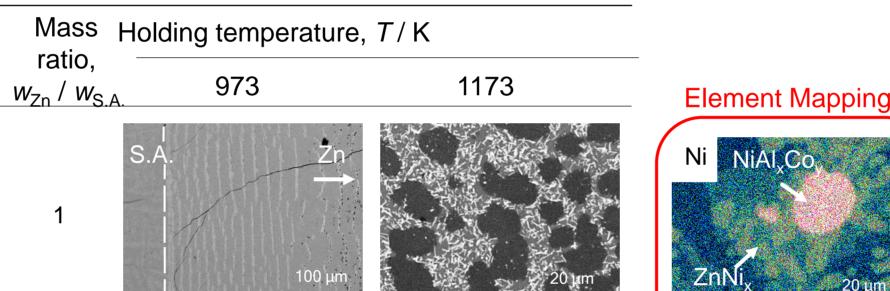

Efficient recovery of refractory metals

> High-speed / low energy consumption

> No waste solution containing strong acid is generated

Separation of refractory metals from superalloy scraps by using molten metal

 Concept of separation of refractory metals by using molten metal



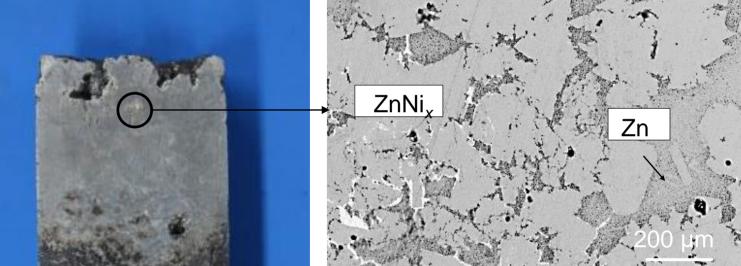
Dissolution of superalloy in <u>molten zinc (Zn)</u>
• Large Ni solubility

Experimental conditions Conditions Conditions Conditions Conditions Conditions Superalloy ingot was heated with molten Zn at 973 K or 1173 K for 6 h in a quartz ampoule, and then quenched to room temperature.

<u>Result</u>

Microstructures of the obtained samples (SEM-EDS)

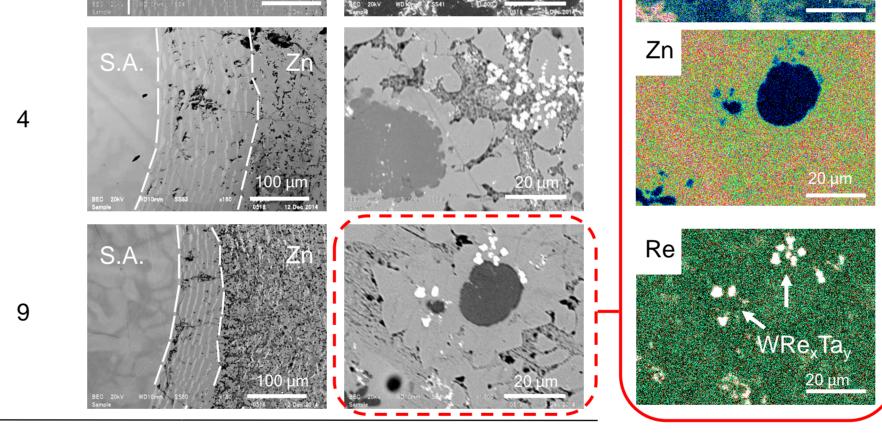
Separation of ZnNi_x alloy from refractory metals

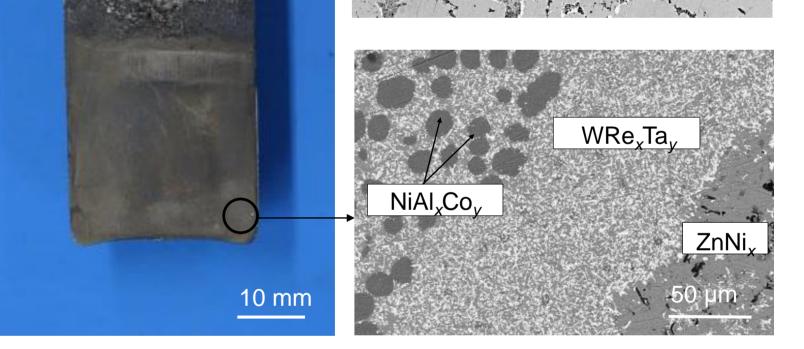

Experimental conditions

Superalloy was heated with molten Zn at 1173 K for 6 h in a quartz ampoule, and then cooled to room temperature in the furnace. The mass ratio of Zn to superalloy was 4 : 1.

<u>Result</u>

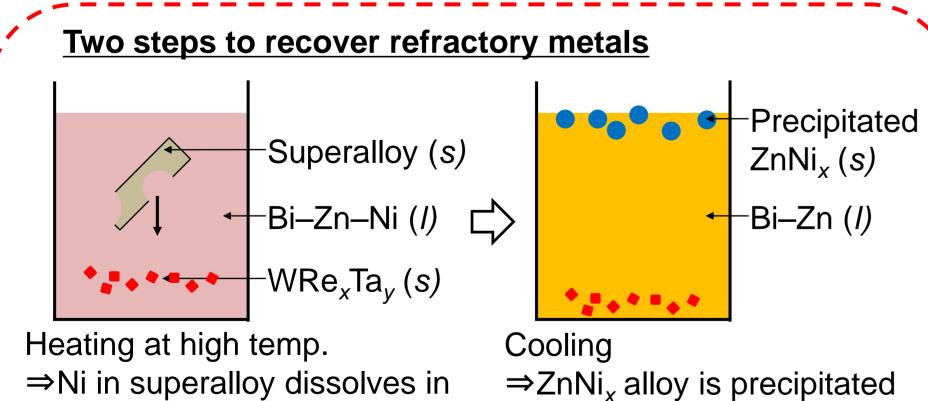
75


Microstructures of the obtained samples (SEM-EDS)


- Ni and refractory metals can be separated and recovered to their metallic state.
- > No waste solution is generated
- Bulk scraps can be treated (highly scalable process)

Purpose of this study

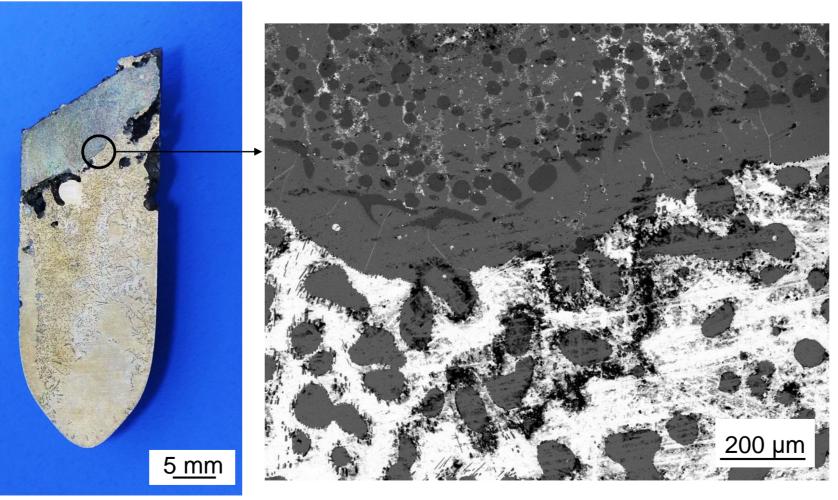
To demonstrate the feasibility of the proposed recycling process for superalloys using molten Bi–Zn.


- > 973 K: The Ni-based superalloy hardly dissolved in molten Zn
- > 1173 K: The Ni-based superalloy disappeared in molten Zn
- Refractory metals can be separated from Ni in the form of a WRe_xTa_y alloy

- Major percentage of the precipitated ZnNi_x alloy was concentrated at the lower part of liquid Zn matrix because of its higher density.
- Separation of ZnNi_x and WRe_xTa_y alloys could not be achieved because both alloys are accumulated at the bottom.

Gravity separation of Ni using molten Bi–Zn

Concept of Ni separation by using bismuth (Bi)–Zn



Gravity separation of Ni and refractory metals

Experimental conditions

Superalloy was heated with molten Bi–Zn alloy at 1173 K for 24 h in a quartz ampoule, and then cooled to 1023 K. The alloy was heated at 1023 K for 12 h. Mass ratio of superalloy to Zn and Bi was m_{SA} : m_{Zn} : m_{Bi} = 1 : 4 : 8.

<u>Result</u> (Exp. no. 170624_1)

Summary

- In order to develop a new recycling process for superalloys, the reactions between a superalloy and molten Zn and Bi–Zn alloy were investigated.
- The superalloy fully dissolved in the molten Zn at 1173 K. However, the separation of ZnNi_x and WRe_xTa_y alloys could not be achieved.
- After the dissolution of the superalloy in the molten Bi–Zn alloy, the obtained alloy was cooled. The ZnNi_x alloy was then precipitated and floated on the molten Bi–Zn alloy.
- More experimental study is needed in order to understand the behavior of refractory metals in molten Bi–Zn alloy.

molten Bi–Zn, while Re forms alloy with W and Ta.

from molten Bi–Zn, after which it floats because of its / smaller density.

• Why Bi–Zn (*I*) was used?

Density at 1023 K,

ρ_{i,1023 K} / g · cm⁻³ 20.7 (Re) 19.1 (W)

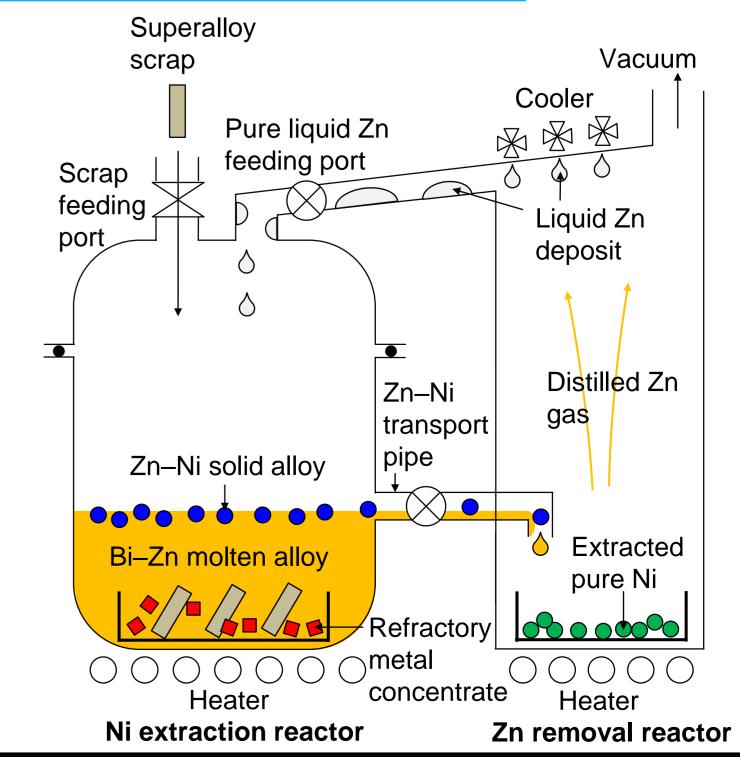
When molten Zn–Bi–Ni alloy is cooled to 1023 K, ZnNi_x intermetallic alloy and molten Bi–Zn alloy are formed.

16.4 (Ta) ➤ Precipitated ZnNi_x intermetallic alloy floats on the liquid surface of the molten Bi–Zn alloy because of its lower density.
 9.5 (Bi)

9.5 (Bi)

2.7 (AI)

8.6 (Ni) ➤ Refractory metals (W, Re, Ta) are more likely to accumulate at the bottom of Bi–Zn alloy as a result of their relatively high densities and weak chemical affinities with Bi and Zn.


Upper phase • Solid matrix (Grey) : $Zn_{78}Ni_{19}Co_2$ • Black deposit : $Ni_{39}Al_{27}Zn_{18}Co_{13}Ta_2Cr_1$ Lower phase

Liquid matrix (White):Bi₉₁Zn₈Re₁

• Gray deposit : $Zn_{78}Ni_{19}Co_2$ (Alloy particles containing refractory metals were dispersed in the entire area, but their composition could not be measured because of their relatively small size.)

Large percentage of $ZnNi_x$ alloy floated on the liquid surface of Bi–Zn alloy. This results shows the possibility of gravity separation of Ni and refractory metals!

Industrial application

