

Nickel and rhenium separation from nickel-based superalloy scraps using zinc circulation

Ryohei Yagi^{1,2}, Toru H. Okabe²

¹Department of Material Engineering, Graduate School of Engineering, The University of Tokyo ²Institute of Industrial Science, The University of Tokyo

Introduction

- Ni-based superalloy
- against corrosion
- (~1700 K)

Composition of Ni based superalloy

ENCEON

VERSITY

Analytical results of residues obtained at the bottom of the chamber after Zn-circulation and distillation experiment. Heating Concentration of element *i*, C_i (mass %)

Zinc circulation (in Argon gas)

ZnNi

Experimental conditions

10 mm

Zinc circulation using siphon

-Zn condenser

Condensed Zn liquid

Mechanism

(Zn–Ni transportation based on the principle of the siphon)

Result

Result

Zn condenser

Analytical results of residue (~100 g) obtained at the bottom of the chamber after Zn-circulation experiment. Exp. Sample Concentration of element i, C_i (mass %) Ni Al Co Cr W Ta Re Zn Bottom 5.6 n.d. 0.5 0.5 n.d. n.d. n.d. 93.4 Analyzed by XRF. n.d.: Not detected. Below the detection limit of the XRF (< 0.01 mass %).

Residue at the bottom of the sample crucible chamber

After Zn distillation

Analytical results of residues obtained after Zn-distillation					
experiment.					
Exp.	Sample	Concentration of element <i>i</i> , C_i (mass %)			
#					-

Result

Analytical results of residue (~100 g) obtained at the bottom of the chamber after Zn-circulation experiment. Exp. Holding Concentration of element *i*, C_i (mass %) time Al Co Cr W Ta Re Zn *t'* / h n.d. 0.1 n.d. n.d. n.d. n.d. 99.2 n.d. 0.1 n.d. n.d. n.d. n.d. 98.5 n.d. 0.1 n.d. n.d. n.d. n.d. 99.1).0 n.d. n.d. n.d. n.d. n.d. n.d. 100.0 18 Analyzed by XRF. n.d.: Not detected. Below the detection limit of the XRF (< 0.01 mass %).

The amount of Ni transported to the bottom was low.

<mark>Ni</mark> Al Co Cr <mark>W</mark> Ta Ke 5 **m**m Superalloy (60.0) 5.6 9.5 6.4 (6.3) 6.3 (2.9) 0.2 Residue at the Residue at the 10 Crucible **43.7** 5.9 8.2 5.9 **14.2 13.8 6.5** 1.9 sample crucible bottom of the chamber **77.9** 4.0 9.2 6.4 **0.7 0.9 0.4** 0.6 Bottom Analyzed by ICP. In the sample crucible: Ni \downarrow Refractory metals \uparrow At the bottom : Ni ↑ Refractory metals ↓

Re and Ni could be separated by using Zn-circulation.

Summary

- The feasibility of the proposed Re-concentrating process using Zn circulating reaction chamber was experimentally demonstrated.
- Three types of Zn circulating reaction chamber were used. Vacuum type: W, Ta, and Re were transported to the bottom of chamber, and thus, could not be separated from Ni. The amount of Ni transported to the bottom Ar type: of the reaction chamber was low Siphon type: **Re and Ni could be separated effectively.**