

Development of New Recovery Process for Rhenium from Nickel-based Superalloy Scraps

<u>八木</u>良平^{1,2}、 岡部 徹²

1東京大学大学院 工学研究科マテリアル工学専攻、2東京大学 生産技術研究所

はじめに

1500 1000

Suitable region

Zn揮発分離実験の代表的な結果(XRF)

Zn還流反応容器によるNiとReの連続分離

超合金中のNiを連続的に抽出除去し、より効率良くReを濃縮するため、 Znが還流する反応容器を独自に設計し、その有用性を検証した。

<u>実験方法:</u>

①Zn還流によるNiとReの分離実験

▶ 1173 K: Ni基超合金はZn中に完全に消失

Zn還流反応容器内に短冊状のNi基超合金 (10~25 g)とZnショット (100~250g)を真空封入 (< 2 Pa) した。サンプル容器周辺が 1173 Kとなる温度分布で6 hrまたは12 hrの熱処理を行った。 ②Zn揮発分離実験

Zn還流反応容器上部を切断し、下図のようにZn揮発装置内に装填し、 サンプル容器周辺が973 Kもしくは 1173 Kとなる温度分布で, 12 hrの熱処理を行った。

実験結果:

- Znは反応容器上部で凝縮してサンプル容器に滴下し、超合金と 反応した。
- 一定量のZnがサンプル容器に滴下すると、Znが激しく沸騰した。

Zn揮発実験後の反応容器底部から回収された試料の組成(XRF)

Exp.	Concentration of element i , C_i (mass%)									
#	Ni	Co	Cr	Та	W	Al	Re	Ti	Zn	Fe
Α	54.0	8.7	8.1	8.9	11.9	1.4	3.1	2.1	1.7	n.d.
В	56.2	10.5	6.8	8.2	11.3	1.0	2.6	2.1	1.3	n.d.
С	25.3	2.3	14.3	2.0	2.6	4.2	1.1	0.3	0.6	39.5
n d. Not detected Below the detection limit of the XRE (<0.01 mass%)										

▶ Zn還流反応容器を用いることで、Niを超合金から溶融Zn中に 抽出するとともに反応容器下部へ運搬できた。 ➢ WRe_xTa_y粒子も、反応容器下部に存在した。 (Znの沸騰により、サンプル容器内の溶融Znが激しく撹拌され 溶融ZnとともにWRe、Ta、粒子も容器下部へ移動したと考えら れる)

Zn揮発分離実験	の代表的な結果	₹(XR	F, SE	M-ED	DS)					
Sampla	Analyzed object	Concentration of element i , C_i (mass%)								
Sample	Analyzed Object	Ni	Co	Cr	Та	W	Al	Re	Re Ti Zn	
Residue in crucible	Surface ^a	83.6	8.0	4.0	-	-	3.9	-	0.3	0.2
	Surface ^b	78.2	6.2	1.8	0.9	0.7	11.9	0.0	0.3	0.0
	Cross section ^b	84.1	7.8	4.5	0.7	1.2	0.8	0.6	0.3	0.0
Deposit at low temperature region Surface ^a		n.d	N.D	N.D	n.d	n.d	n.d	n.d	N.D	100.0
n.d: Not detected. B N.D: Not detected. a: Analyzed by XRF	elow the detection Below the backgro below be background by E	n limit c ound (< EDS.	of the Σ (3 σ).	KRF (<	<0.01	mass%) .			
▶ 高純度	なZnを揮発	回収	できた	と(不	純物	0.0 [′]	1 %比	(不)		

▶ 回収されたNiをさらに高純度化するにはCrやAI、Coの分離 除去工程が必要となる。

実験条件

Exp.	Zinc circulation	on						Zinc distillation	
#	Weight of	Weight	Mass	Temperature at		Holding	Crucible	Temp.,	Time,
	superalloy,	of zinc,	ratio,	Crucible,	Bottom,	time,	height,	$T_{\rm d}/{\rm K}$	$t'_{\rm d}$ / hr
	w _{S.A.} / g	w_{Zn} / g	w_{Zn} / $w_{S.A.}$	$T_{\rm c}/{ m K}$	$T_{\rm b}/{\rm K}$	<i>t'</i> / hr	h / mm	• 	
А	15.0	150.0	10.0	1173	1158	6	60	973	12
В	10.0	150.0	15.0	1173	1169	12	60	973	12
С	9.9	99.0	10.0	1173	1168	12	30	1115	12

 $T_{\rm d}$: Temperature at the crucible

