

ニッケル基超合金スクラップからのニッケルの分離・回収

Direct Extraction and Recovery of Nickel metal from Nickel-based Superalloy Scraps 八木 良平^{1,2}、 岡部 徹²

1東京大学大学院工学研究科マテリアル工学専攻、2東京大学生産技術研究所

はじめに

熱力学的考察

ZnをコレクターメタルとしたNi抽出

Ni 基 超 合 金 からの Ni および Reの 分 離

● 超合金の溶融亜鉛浸漬実験

<u>実験方法:</u>

Ο

 Θ

<u>実験結果①: 溶融亜鉛中の組織観察 (Exp. # 1 ~ 6)</u>

ENCEOUT

VIVERSITY'

熱処理後の組織観察 (SEM-EDS)

Znと超合金を熱処理した後に徐冷することで、密度の大きいNiAl_xCo_v, とWRe_xTa_vを試料下部に沈降させ、ZnNi_xの分離を目指す

ZnNi、合金からのZn揮発分離実験

<u>実験方法:</u>

Thermocouple 超合金の溶融亜鉛浸漬実験Exp. no. 7で 得られたNi濃縮部(試料上部, Zn, ZnNi_x領域)^{Zn (~ 690 K)} を26.4 g切り出し Quartz ampoule

真空雰囲気で加熱 1173 K, 3 hr

◆ ZnNi_x合金からは真空加熱より、Znを分離し、スクラップに比べて 濃度の高いNiを得ることができた。また得られたZnは高純度の状

各相の組成

Docition	Dhaga	Concentration of element i , C_i (mass%)									
FOSITION FILASE		Ni	Co	Cr	Ta	W	Al	Re	Ti	Zn	
Upper	ZnNi _x	14.2	1.1	1.7	0.3	0.4	0.3	0.0	0.0	82.0	
	Zn	1.1	0.0	0.1	0.2	0.3	0.0	0.1	0.0	98.1	
Bottom	$NiAl_x Co_y$	50.6	8.0	0.9	1.9	0.9	6.9	0.0	1.4	29.5	
	WRe_xTa_y	2.3	0.7	5.1	20.6	49.2	0.2	21.7	0.3	0.1	
	ZnNi _x	27.0	1.4	0.2	0.1	0.2	0.2	0.0	0.0	70.9	

Analyzed by EDS.

大まかに二層に分かれた合金が得られた ▶ 試料上部:Zn, ZnNi_x ← ZnNi_xの分離に成功 ➢ 試料下部: NiAl_xCo_v, WRe_xTa_v, ZnNi_x

Zn揮発分離実験の代表的な結果

Sampla	Analyzed object	Concentration of element i , C_i (mass%)									
Sample		Ni	Co	Cr	Та	W	Al	Re	Ti	Zn	
Residue in crucible	Surface ^a	83.6	8.0	4.0	-	-	3.9	-	0.3	0.2	
	Surface ^b	78.2	6.2	1.8	0.9	0.7	11.9	0.0	0.3	0.0	
	Cross section ^b	84.1	7.8	4.5	0.7	1.2	0.8	0.6	0.3	0.0	
Deposit at low temperature region	Surface ^a	n.d	N.D	N.D	n.d	n.d	n.d	n.d	N.D	100.0	
n.d: Not detected. B	Not detected. Below the detection limit of the XRF (<0.01 mass%).										

N.D: Not detected. Below the background ($<3\sigma$). a: Analyzed by XRF. b: Analyzed by EDS.

▶ 高純度なZnを揮発回収できた(不純物0.01%以下) ▶ 回収されたNiをさらに高純度化するにはCrやAl、Coの分離 除去工程が必要となる。

態で分離回収できることが分かり、Znをプロセス内で循環利用で きることが確かめられた。

Future work

