

Development of New Recovery Process for Rhenium from Nickel-based Superalloy Scraps Ryohei Yagi^{1,2}, Toru H. Okabe²

¹Department of Material Engineering, Graduate School of Engineering, The University of Tokyo ²Institute of Industrial Science, The University of Tokyo

Introduction

Ni-based superalloy

- Excellent mechanical strength \succ
- Creep-resistance at high temperature
- Good surface stability against corrosion

High pressure turbine blade

Honda Motor Co., Ltd. webpad (http://www.honda.co.ip/ tech/newcategory/airplane/HF120/)

 \Rightarrow Aerospace / Power-generation industries

Typical recycling process

- Pyrometallurgical process (current major process) Superalloy scrap is melted with primary alloying metals to produce superalloy ingot.
- \times 20 % of Re is lost due to oxidation into Re_2O_7 .
- Cascade use

Reuse of superalloy scrap as additive for steel production.

New recovery process

Demand for Re has increased rapidly, due to increased Re consumption for Ni-based superalloy production.

Superalloy	Compositioin of selected single crystal nickel-base superalloys											
	Re	Cr	Co	Mo	W	Al	Ti	Та	Nb	Hf	Ru	Ni
CMSX-4	3.00	5.70	11.00	0.42	5.20	5.20	0.74	5.60	-	0.10	-	63
CMSX-10	6.00	2.00	3.00	0.40	5.00	5.70	0.20	7.00	0.10	0.03	-	71
UCSX-1	6.30	2.30	6.00	1.50	7.00	5.80	0.20	8.40	-	0.03	2.00	60
EPM-102	5.95	2.00	16.50	2.00	6.00	5.55	-	8.25	-	0.15	3.00	51
TMS-138	5.00	3.00	12.00	3.00	6.00	-	-	6.00	-	0.10	2.00	63

Typical Re concentration is $3 \sim 6$ mass%. (Re concentration in typical ore is only $1 \sim 10$ ppm)

Ni-based superalloy is a good source of Re!

 \mathbf{X} Re cannot be recycled.

- Hydrometallurgical process After dissolution in acid, Re is separated from other refractory metals such as Ta, W and Hf by ion exchange.
- \mathbf{X} Toxic waste solution. \times Long processing time.
- ✓ No waste solution
- ✓ High efficiency
- Purpose of this study
- > To identify the collector metal
- > To demonstrate the feasibility of the proposed Re-concentrating process.

Thermodynamic analysis

Collector metal, M

Re recovery from superalloy

Scrap sample in molten collector metal

Composition of W-Re-Ta phase

Vertical distribution of intermetallic alloys

Superalloy was heated with Zn at 1173 K for 6 h and then cooled to room temperature in a vacuum quartz ampoule for 12 h.

W-Re-Ta separation

Conclusion

- The feasibility of Re separation from Ni-based superalloy using Zn as a collector metal was demonstrated.
- W, Re, and Ta form intermetallic particles in molten Zn. Since these particles have high density, they were concentrated at the bottom of the crucible.
- The magnetic separation of W-Re-Ta from Ni-Al-Co following Zn evaporation was unsuccessful. Another method to separate W-**Re-Ta from Ni-Al-Co must be considered.**

Future work

Re separation process from Ni-Al-Co alloy must be developed.

- Heavy alloys such as W-Re-Ta are concentrated at the bottom of the sample.
- \succ Zn-Ni alloy is concentrated in the upper part.
 - Separation of Ni and Re was successful. Separation of Ni-AI-Co must be achieved.
- It was possible to separate Zn in the ampoule by heating with a temperature gradient.
- > W-Re-Ta was not separated by magnetic separation because of its strong adhesion to Ni-Al-Co alloy.

Ni and Re separation using Mg as a collector metal.

 Experimental apparatus to continuously extract Ni and concentrate Re is shown in the right figure. **Considering the density** difference between Ni and W-Re-Ta, it is possible to obtain concentrated W-Re-Ta particles in the bottom of the upper crucible.

