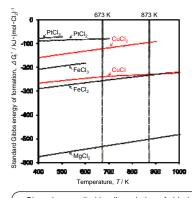
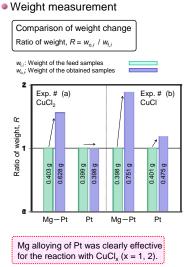

New Separation and Recovery Process of Platinum Using Chlorinating Agents

Chivoko Horike and Toru H. Okabe*

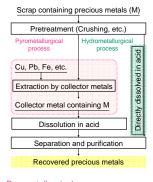
Graduate Student, Graduate School of Engineering, The University of Tokyo; *Institute of Industrial Science, The University of Tokyo,


Introduction

Thermodynamic analysis

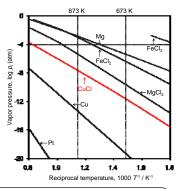

Yea

Ellingham diagram



- CI can be supplied by dissociation of chloride salts
- Mg can be chlorinated faster than Pt. $CuCl_2$ is dissociated into Cl_2 and CuCl around 873 K.
- Vapor pressure of CuCl is lower than 10-4 atm.

Results and Discussion



Typical recovery process

rometallurgical process

- O High efficiency & speed × High energy cost & large facilities
- Hydrometallurgical proces
- O Low energy cost & easy handling
- Long processing time & generation of a large amount of waste solution
- Vapor pressure of selected metals and chlorides

Reaction temperature was determined at 873 K CuCl₂ and CuCl were selected for the chlorinating agent.

1 cm

1 cm

sample

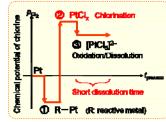
Mg-Pt

Chlorinated Mg-Pt

Chlorinated

Mg-Pt

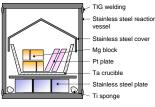
* Determined by ICP-AES analysis


Exp. #

а

b

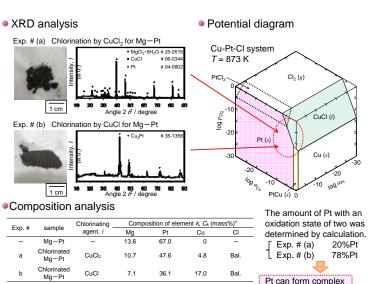
Purpose of this study


Development of a new process for an effective recovery of PGMs from scrap

- 1 Compound formation under a highly reducing atmosphere Pretreatment for selective and efficient dissolution of PGMs
- 2 Chlorination High dissolution efficiency
 - **→** Smaller amounts of acids required for dissolution
 - Fast dissolution

Experimental

Synthesis of Mg—Pt compounds


Pure Pt was reacted with molten Mg at 1173 K for 12 h.

Homogeneous Mg-Pt compoun were formed. (SEM, EDS, XRD) Pt compounds

Chlorination condition

Mg-Pt compounds and Pt were reacted with a chlorinating agent (CuCl₂ or CuCl) at 873 K for 3 h.

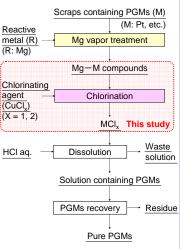
Exp. #	Chlorinating agent, <i>i</i>	Mass of chlorinating agent <i>i</i> , <i>w</i> _i / g		lement in the gent <i>j, M_j</i> / mol Cl
а	CuCl ₂	4.028	0.03	0.06
b	CuCl	5.944	0.06	0.06

compounds

Conclusion

Chlorination apparatus

Quartz tube


Heater

vacuum

A fundamental technique that utilizes the selective alloying of PGMs with collector metals followed by chlorination/oxidation was studied.

- Mg-Pt compounds and Pt were chlorinated by using a chlorinating agent (CuCl₂ or CuCl) at 873 K for 3 h.
- · Mg alloying of Pt was clearly effective for the reaction with $CuCl_x$ (x = 1, 2).
- After chlorination for Mg—Pt by CuCl₂ MgCl₂ and pure Pt were formed, and the obtained sample was contaminated by CuCl.
- After chlorination for Mg-Pt by CuCl,
- Fut@werkformed.
- Development of new supplying method of $CuCl_{x}$ (x = 1, 2) for more effective chlorination of Pt.
- · Integration of the proposed chlorination method with the conventional dissolution methods in order to investigate practical processes.

Flowchart of the new process

Glass wool

000000000000000000000000

Powder of Mg-Pt

Chlorination agent (CuCl₂ or CuCl)

Quartz crucible

Pt powder

873 K