

Experimental condition

Exp.			Mass of sam	Excess	Calculated nominal			
no.	no. Feed		Collector metal	Flux	Reductant	reductant ratio R_{Ca}^{*}	composition of Al-Sc alloy	
	Sc_2O_3 ScF_3		Al	CaCl ₂	Са			
А	0.690	_	-	-	1.200	2	-	
В	-	0.51	-	-	0.600	2	-	
С	0.150	-	0.96	0	0.260	2	Al-9mass%Sc	
D	-	0.22	0.96	0	0.260	2	Al-9mass%Sc	
E	0.150	-	0.96	1.27	0.260	2	Al-9mass%Sc	
F	0.100	-	0.96	1.24	0.170	2	Al-6mass%Sc	
G	0.075	-	0.96	1.06	0.098	1.5	Al-5mass%Sc	
Н	0.075	-	0.96	1.06	0.081	1.25	Al-5mass%Sc	
I	0.075	-	0.96	1.06	0.065	1	AI-5mass%Sc	
J	0.075	-	0.96	1.06	0.049	0.75	Al-5mass%Sc	

* Excess reductant ratio $R_{Ca} = w_{Ca} / w_{Ca}^{\text{theo.}}$, w_{Ca} : Mass of reductant Ca, $w_{Ca}^{\text{theo.}}$: Stoichiometic mass of reductant Ca necessary for reduction (=0.87* $w_{Sc_2O_3}$, 0.22* $w_{Sc_5_3}$)

Result (1) Sc_2O_3 (or ScF_3) + Ca

Reduction experiment in the absence of a collector metal

A complex oxide (CaSc $_2O_4$) was formed and reduction was incomplete.

ScF₃ was successfully reduced to metallic Sc.

Phase diagram for the AI-Sc system

The amount of a feed material and a collector metal were adjusted to obtain the Al alloy containing 5-9 mass%Sc when the reduction was assumed to be complete.

Result (2) Sc_2O_3 (or ScF_3) + AI + Ca ^{Metallothermic Reduction}

Sc₂O₃ was successfully reduced to metallic Sc and alloyed in situ to form liquid Al-Sc alloy without forming CaSc₂O₄.

ScF₃ was successfully reduced to metallic Sc and alloyed in situ to form liquid AI-Sc alloy.

Result (3) $Sc_2O_3 + AI + Ca + CaCI_2$

Reduction experiment using a collector metal and flux

Exp. E: Sc₂O₃ (0.0011 mol), Ca (0.0065 mol), Al (0.036 mol), CaCl₂ (0.0095 mol)

Metallic phase was easily separated from slag phase.

EPMA analysis

Result (4) $Sc_2O_3 + AI + Ca + CaCI_2$

Reduction experiment changing amount of calcium reductant

(a) R_{Ca} = 1.5 (Exp. G)

(c) R_{Ca} = 1 (Exp. I)

(b) *R*_{Ca} = 1.25 (Exp. H)

(d) R_{Ca} = 0.75 (Exp. J)

It is thermodynamically difficult to completely prevent calcium accumulation in the alloy by controlling the amount of calcium reductant.

 $R_{\rm Ca} = w_{\rm Ca} / w_{\rm Ca}^{\rm theo.}$

 w_{Ca} : The mass of the calcium reductant used in the experiment $w_{Ca}^{theo.}$: The stoichiometoric mass of the calcium reductant necessary for reducing all Sc₂O₃ to metallic scandium

Molten salt electrolysis

AI-Sc alloy or Ag-Sc alloy (cathode)

Electrode

Crucible

Electrode+Crucible

Molten Salt Electrolysis

Assembled apparatus for molten salt electrolysis

Experimental condition

Exp.#	Molten salt	Mass of samples, w_i / g				Cathode	Anode	Crucible				
	System	Y_2O_3	Sc_2O_3	CaCl ₂	Ag	Al				Current, <i>i</i> /A	Temp., <i>T/</i> K	Time, t'/s
А	CaCl ₂ -Y ₂ O ₃	1.13	-	40	4.49	-	Silver	Carbon	Iron	0.5	1173	3600
В	$CaCl_2-Y_2O_3$	1.13	-	40	2.22	-	Silver	Carbon	Nickel	1.0	1173	1800
С	$CaCl_2-Sc_2O_3$	-	0.69	40	-	2.66	Aluminum	Carbon	Nickel	0.5	1173	1800

		ΔG [°] (kJ, at 1100K)	ΔE ^o (V)
Sc ₂ O ₃ + 3/2 C	\rightarrow 2 Sc + 3/2 CO ₂	991.01	1.71
Sc ₂ O ₃ + 3 C	\rightarrow 2 Sc + 3 CO	957.719	1.65
Sc ₂ O ₃	\rightarrow 2 Sc + 3/2 O ₂	1584.887	2.73
$CaCl_2(l)$	\rightarrow Ca(l) + Cl ₂	629.108	3.26
CaO + 1/2 C	\rightarrow Ca(l) + 1/2 CO ₂	322.825	1.67
CaO + C	\rightarrow Ca(l) + CO	311.728	1.61
CaO	\rightarrow Ca(l) +1/2 O ₂	520.784	2.7

Theoretical decomposition voltage

		ΔG [°] (at 1100K)	ΔE ^o (V)
Y ₂ O ₃ + 3/2 C	\rightarrow 2 Y + 3/2 CO ₂	992.574	1.71
Y ₂ O ₃ + 3 C	\rightarrow 2 Y + 3 CO	959.283	1.66
Y_2O_3	\rightarrow 2 Y + 3/2 O ₂	1586.451	2.74
$CaCl_2(l)$	$\rightarrow Ca(l) + Cl_2$	629.108	3.261
CaO + 1/2 C	\rightarrow Ca(l) + 1/2 CO ₂	322.825	1.67
CaO + C	\rightarrow Ca(l) + CO	311.728	1.61
CaO	\rightarrow Ca(l) +1/2 O ₂	520.784	2.7

Exp. A (Electrolysis of $CaCl_2$ - Y_2O_3 molten salt Electrolysis

(Anode: C, Cathode: Ag, Crucible: Fe, Current: 0.5 A, Time: 7200 s)

Exp. B (Electrolysis of $CaCl_2$ - Y_2O_3 molten salt Electrolysis

(Anode: C, Cathode: Ag, Crucible: Ni, Current: 1 A, Time: 3600 s) Before Exp.

After Exp.

Exp. C (Electrolysis of $CaCl_2$ -Sc₂O₃ molten salt Electrolysis)

(Anode: C, Cathode: Al, Crucible: Ni, Current: 0.5 A, Time: 1800 s)

Vapor pressure

Vapor pressure of Sc and Al is substantially smaller than that of Ca

Vapor pressure

Vapor pressure of Sc and Al is substantially smaller than that of Ca

I. Barin, Thermochemical data of pure substance, 3rd edition, (Weinheim: Germany, VCH Publisher Inc., 1995)

Analytical results by XRF

Exp.	Nominal	Excess reductant	Mass of flux	Concentration of element <i>i</i> , C_i (mass%) ^b					
no.	composition of								
	Al-Sc alloy ^a	ratio, R _{Ca} a	W _{flux/g}	AI	Sc	Са	Si	Fe	Та
С	AI-9mass%Sc	2	0.00	58.32	19.00	22.45	< 0.01	0.14	< 0.01
D	Al-9mass%Sc	2	0.00	63.67	17.81	17.12	< 0.01	0.36	1.03
Е	AI-9mass%Sc	2	1.27	61.14	21.76	14.83	< 0.01	0.41	1.85
F	Al-6mass%Sc	2	1.24	70.02	16.61	12.74	< 0.01	0.14	0.47
G	AI-5mass%Sc	1.5	1.06	73.87	13.37	10.85	0.30	0.22	1.37
Н	AI-5mass%Sc	1.25	1.06	76.67	11.22	11.60	0.54	0.10	0.40
I	AI-5mass%Sc	1	1.06	82.44	9.76	5.93	< 0.01	1.16	0.68
J	AI-5mass%Sc	0.75	1.06	84.67	10.09	2.15	< 0.01	2.08	0.99

Table. Analytical results of the samples obtained after the reduction experiment.

^a Excess reductant ratio $R_{Ca} = w_{Ca} / w_{Ca}^{theo.}$, w_{Ca} : Mass of reductant Ca, $w_{Ca}^{theo.}$: Stoichiometic mass of reductant Ca necessary for reduction (=0.87 × $w_{Sc_2O_3}$ or 0.22 × w_{ScF_3}) ^bDetermined by X-ray fluorescence analysis.

Phase diagram for the AI-Ca system

