PRODUCTION OF SCANDIUM AND AI-Sc ALLOY BY **USING CaCl₂ MOLTEN SALT**

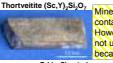
Masanori Harata*, Hiromasa Yakushiji, Toru H. Okabe

*Institute of Industrial Science, The University of Tokyo, *Graduate Student, Graduate School of Engineering, The University of Tokyo

Introduction

·What is Scandium?

Sc is one of the rare earth elements (RE).


Properties of Sc

Element	Atomic number Z	Atomic weight M	Density at 20 p/g • cm ⁻³	Melting point T /	Boiling point T _b /	lonic radius r, / Å	Crystal structure at 25	Electro negativity	Price (\$/kg)
Sc	21	44.96	2.99	1540	2832	0.75	hop	1.20	18000.00
Y	39	88.91	4.47	1525	3337	0.90	hcp	1.11	450.00
La	57	138.91	6.15	920	3457	1.03	hcp	1.08	350.00
Ce	58	140.12	6.77	798	3427	1.01	foc	1.08	350.00
Nd	60	144.24	7.01	1016	3067	0.98	hcp	1.07	450.00
Sm	62	150.40	7.54	1073	1791	0.96	hcp	1.07	300.00
Fe	26	55.85	7.87	1536	2863	0.55	bcc	1.64	0.03
AI	13	26.98	2.70	660	2520	0.53	foc	1.47	1.44
Ti	22	47.87	4.54	1666	3289	0.61	hcp	1.32	9,66

- Lightweight
- ·Chemically reactive
- •Sc₂O₃ is one of the most stable oxides on earth a large amount of Sc₂O₃ at a low cost

Resource

Sc is the 31st most abundant element in the earth's crust, with a crustal abundance of 22 ppm.

Minerals such as Thortveitite contain a large amount of Sc However, such minerals are not used as a source of Sc. because they are scarce.

Table Chemical composition of Thortveitite

Concentration of element I, C _I (wt%)*								
Al	Si	Р	Sc	Mn	Fe	Υ	Zr	Hf
1.33	26.25	0.21	58.13	0.55	3.45	5.99	2.39	1.69
			$\overline{}$					

Table Minerals containing Sc

	Minerals	Sc ₂ O ₃ content (%)		Minerals	Sc ₂ O ₃ content (%)	
Oxides	Magnetite	0.0001~0.04	Phosphates	Xenotime	0.0015~1.5	
	Hematite	up to 0.15		Monazite	0.002~0.5	
	Titanomagnetite	0.0002~0.02		Apatite	0.0003~0.08	
	Ilmenite	0.0015~0.15	Silicates	Zircon	0.005~0.3	
	Rutile	0.005~0.16		Beryl	0.0005~1.2	
	Wolframite	0.005~1.3		Garnet	0.02~0.4	
	Uraninite	0.15~0.2		Olivine	0.0003~0.02	
	Laterite	0.003~0.03		Pyroxene	up to 0.04	

Currently, Sc is produced in the form of oxide (Sc₂O₃) from rare earth ores or as a byproduct of uranium mill tailings. Recently, Ni smelting has changed from a pyrometallurgical alloying element for Al alloy process to a hydrometallurgical process that can recover

Applications

Catalysts. Laser crystals

Currently, Sc is mainly used as an Al-Sc alloy is expected to be used as a structural material for aircraft etc.

Conventional process

Conversion into fluoride: $Sc_2O_3 + 6 HF^{973 K} 2 ScF_3 + 3 H_2O$

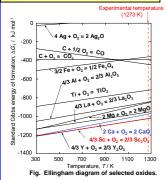
Reduction $2 \operatorname{ScF}_{3} + 3 \operatorname{Ca}^{1873} \overset{\mathsf{K}}{\to} 2 \operatorname{Sc} + 3 \operatorname{CaF}_{2}$

Sc₂O₃ is converted into ScF₃ because it is thermodynamically stable. Further, it is difficult to reduce Sc_2O_3 to metallic Sceven by using Ca as a reductant.

Disadvantages

- · The production cost is high because an expensive reaction apparatus is required for handling the fluoride.
- Contamination from the crucible cannot be prevented due to the high-temperature reaction.

Purpose of this study


To develop a new process that can produce Sc metal or Al-Sc alloy directly from Sc₂O₃ at temperatures lower than those used in the conventional process.

Potential lead (Ni wire)

Stainless steel tube

Metallothermic Reduction

Thermodynamic analysis

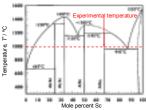
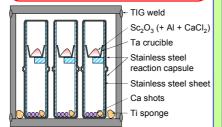


Fig. Phase diagram for the Al-Sc reaction


Experiment

Reduction:

 $Sc_2O_3(s) + 3 Ca(g) \rightarrow 2 Sc(s) + 3 CaO(s)$

Reduction and alloying:

 $Sc_2O_3(s) + AI(l) + 3 Ca(g)$ \rightarrow Al-Sc alloy (l) + 3 CaO (s)

Experimental conditions for the metallothermic reduction

Ехр.		Mass of sar	nple, w/g	Excess	Calculated nominal		
no.	Feed	Collector metal	Flux	Reductant	reductant ratio	composition of Al-Sc alloy	
	Sc ₂ O ₃	Al	CaCl ₂	Ca			
а	0.69	-	-	1.20	2	-	
b	0.15	0.96	-	0.26	2	Al-6mol%Sc	
С	0.15	0.96	1.27	0.26	2	Al-6mol%Sc	

A complex oxide (CaSc₂O₄) was formed

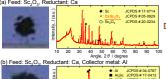
Sc₂O₃ was successfully reduced to metallic

Sc and alloyed in situ to form Al-Sc liquid

alloy during the reduction. It was difficult

to separate the metal phase from the salt

hase separation was improved by using


CaCl₂ as a flux. However, excess Ca reductant remained in the Al₄Ca phase.

and reduction was incomplete.

Reduction temperature: T = 1273 K Holding time: t' = 6 hr

Results

XRD analysis

10 20 30 40 50 60 70 80 90 1
Angle, 2θ / degree
(c) Feed: Sc₂O₃, Reductant: Ca, Collector metal: Al, Flux: CaCl₂

EPMA analysis

Conclusion

Al-Sc alloy was directly produced from Sc₂O₃ by using Al as the collector metal: however, excess Ca reductant remained in the alloy sample.

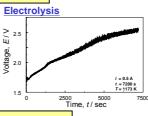
Molten Salt Electrolysis

Experiment

 $Sc_2O_3 + 6 e^{-1}$ $2 \text{ Sc} + 3 \text{ O}^2$

 Overall reaction $Sc_2O_3 + C$ 2 Sc + CO,

Table Theoretical decomposition voltage


		ΔG°/ kJ	ΔE°/ V
		at 1100 K	ДL / V
$Sc_2O_3(s) + 3/2 C(s)$	\rightarrow 2 Sc(s) + 3/2 CO ₂ (g)	991.01	(1.71)
$Sc_2O_3(s) + 3C(s)$	\rightarrow 2 Sc(s) + 3 CO(g)	957.719	1.65
$Sc_2O_3(s)$	\rightarrow 2 Sc(s) + 3/2 O ₂ (g)	1584.89	2.73
Y ₂ O ₃ (s) + 3/2 C(s)	\rightarrow 2 Y(s) + 3/2 CO ₂ (g)	992.574	1.71
$Y_2O_3(s) + 3C(s)$	\rightarrow 2 Y(s) + 3 CO(g)	959.283	1.66
$Y_2O_3(s)$	\rightarrow 2 Y(s) + 3/2 O ₂ (g)	1586.45	2.74
CaCl ₂ (1)	\rightarrow Ca(l) + Cl ₂ (g)	629.108	3.26
CaO(s) + 1/2 C	\rightarrow Ca(l) + 1/2 CO ₂ (g)	322.825	1.67
CaO(s) + C(s)	$\rightarrow Ca(l) + CO(g)$	311.728	1.61
CaO(s)	\rightarrow Ca(l) +1/2 O ₂ (g)	520.784	2.70

Ca contamination of Al-Sc alloy could be Ca contamination of Al-Sciency code 25 prevented by controlling the potential between Fig. Schematic illustration of molten salt electrolysis. the anode and the cathode.

Rubber plug Ar inlet Reaction chamber Ni reference electrode CaCl2-Sc2O3 molten salt 0 Carbon electrode (Anode) 0 Fe crucible 0 Al (or Ag)-Sc alloy (Cathode) Or Ceramic insulator matic illustration of experimental apparatus for

As a preliminary experiment, Y_2O_3 was used instead of Sc_2O_3 , and the production of Ag-Y alloy by the electrolysis of $CaCl_2$ - Y_2O_3 molten salt was investigated.

Results

Before exp Concentration of element i, C; (mass%) 2.90 41.83 After exp. 53.93

Currently, Sc₂O₃ reduction is an ongoing

Conclusion

It was demonstrated that Ag-Y alloy could be produced by the electrolysis of CaCl₂-Y₂O₃ molten salt.

The electrolysis cell must be improved to prevent the contamination of the molten salt by Fe.

Future study

Metallothermic reduction

Development of a new technique for preventing Ca contamination of Al-Sc allov.

Molten salt electrolysis

Improvement of electrolysis cell to prevent Fe contamination. Investigation of the reaction mechanism of CaCl₂–Sc₂O₃ molten salt. Development of a new direct production process of Sc or Al-Sc alloy by molten salt electrolysis.