The 1st Workshop on Reactive Metal Processing

Production of Titanium Subchloride by Employing Molten Salts as Reaction Medium

<u>Osamu Takeda^{1,2} and Toru H. Okabe²</u>

¹ Graduate student

² Institute of Industrial Science, The University of Tokyo

Institute of Industrial Science, The University of Tokyo March 18, 2006, Active Metal 1

Current Status of Titanium Production

[S. Nakamura: Industrial Rare Metals, (Tokyo, Japan: Arumu Publish co., 2004), pp. 52–55.]

Purpose of this Study

The Kroll process Feed: TiCl₄

- Huge exothermic reaction
- →Reduction speed is extremely slow, and 10 days are required for producing 10 ton of Ti.
- →Vacuum distillation and cooling process are also "time consuming".

Physical and Chemical Properties of Titanium Chlorides

	TiCl ₄	TiCl ₃	TiCl ₂
Appearance			
Color	Clear	Red	Black
Molecular weight (g/mol)	189.7	154.2	118.8
Density (g/cm ³)	1.70	No data	3.13
Melting point (°C)	-24.1	—	—
Boiling point (°C)	136.5	—	—
Sublimation point (°C)	-	830	1307
ΔG°_{f} at 800°C (kJ/mol Cl ₂)	-317	-327	-344
$\Delta G'^{\circ}_{f}$ at 800°C (kJ/mol Ti)	-637	-491	-344
Vapor pressure at 800°C (atm)	_	0.74	1.2×10^{-4}

Titanium subchlorides •Low reduction heat At 1073 K (1) $\operatorname{TiCl}_{4}(g) + \operatorname{Mg}(l) \rightarrow \operatorname{TiCl}_{2}(s) + \operatorname{MgCl}_{2}(l)$ $\Delta H^{\circ} = -339 \text{ kJ}. \Delta G^{\circ} = -185 \text{kJ}$ This is suitable for developing high speed process $2 \operatorname{TiCl}_{2}(s) + \operatorname{Mg}(l) \rightarrow \operatorname{Ti}(s) + \operatorname{MgCl}_{2}(l)$ $\Delta H^{\circ} = -91 \text{ kJ}, \Delta G^{\circ} = -130 \text{ kJ}$ (3) $\operatorname{TiCl}_4(g) + 2 \operatorname{Mg}(l) \rightarrow \operatorname{Ti}(s) + 2 \operatorname{MgCl}_2(l)$ (=(1)+(2)) $\Delta H^{\circ} = (-430 \text{ kJ}) \Delta G^{\circ} = -315 \text{ kJ}$

Vapor Pressure

Titanium subchlorides
Low vapor pressure
Stable as a condensed phase

[I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim, (1989).]

Institute of Industrial Science, The University of Tokyo March 18, 2006, Active Metal 6

New Titanium Production Process Using Titanium Subhalides

(1) $\operatorname{TiCl}_{4}(l, g) + \operatorname{Mg}(l, g) \longrightarrow \operatorname{TiCl}_{x}(s, l) + \operatorname{MgCl}_{2}(l)$ $TiCl_4(l, g) + Ti(s, scrap) \rightarrow TiCl_x(s, l)$

 $\text{TiCl}_{\mathbf{x}}(s, l) + \text{Mg}(l, g) \rightarrow \text{Ti}(s) + \text{MgCl}_{2}(l, g)$

Step 1:

High-speed production High-speed of Ti subchlorides and enrichment of TiCl

Step 2:

magnesiothermic reduction of TiCly

Step 3:

High-speed removal of Mg and MgCl₂ from Ti sponge by draining and vacuum distillation

Features of the New Process

Table Comparison of the Kroll process and new process

	Kroll process	New process	
Process type	Batch-type, limited speed	(Semi-)Continuous, high speed	
Feed material	$TiCl_4(l, g)$	$TiCl_2$ or $TiCl_3$ (s, l)	
Heat of reduction, ΔH° / kJ mol Ti	High (–434)	Low (-94 ~ -191)	
Reactor material	Mild steel (Fe contamination unavoidable)	Ti (No Fe contamination)	
Reactor size	Large (Crush and melt)	Small (No crush and	
		direct melt)	
Flux, sealant	Not used	MgCl ₂ , Ti	
Common features	 Magnesiothermic reduction of chloride Removal of MgCl₂ and Mg from Ti sponge by draining and vacuum distillation Production of high-purity Ti with low oxygen content 		

Problem on the Previous Study

Direct reaction of TiCl₄ with Ti; Yield of TiCl_x: 23~35% Consumption ratio of feed Ti: 42~45%

Reason for low efficiency of TiCl_x formation

- 1. TiCl₃ formed, evaporated, and dissipated.
- 2. TiCl₂ solid film formed on surface of metallic Ti hindered chlorination reaction of metallic Ti.
- 3. TiCl₂ was converted to TiCl₃ by reaction with TiCl₄.

For improving efficiency of TiCl_x formation

- 1.TiCl₂ formed on surface of metallic Ti has to be removed.
- 2. Reaction of $TiCl_2$ with $TiCl_4$ has to be prevented.

Titanium Subchloride Synthesis by Reaction of TiCl₄ with Ti in Molten Salts

Institute of Industrial Science, The University of Tokyo

Experimental Procedure

Phase diagram for the MgCl₂–TiCl₂ system

[[]Komarek and P. Herasymenko: J. Electrochem. Soc. 105 (1958) p 210.]

Experimental Procedure

Experimental Results

Status of solidification of the salt

Experimental Results

Table Analytical results of the obtained samples (Exp. 3A).

Posi	Concentration of element <i>i</i> , <i>C</i> _i (mass%)					x value	
tion	Ti ^a	CI ^b	Mg ^a	Fe ^a	Ni ^a	Cr ^a	in TiCl _x
а	2.33	74.63	23.01	0.03	<0.02	<0.01	4.35
b	7.07	72.25	20.62	0.01	<0.02	0.04	2.31
С	8.87	71.85	19.24	0.01	<0.02	0.03	2.39
d	9.58	71.34	18.95	0.08	<0.02	0.04	2.26

a: Determined by ICP-AES.

b: Determined by potentiometric titration method.

- Concentration of Ti in the salt recovered from the upper part of the reaction container was low, and that in the salt recovered from the lower part of the reaction container was relatively high.
- Value of x in MgCl₂—TiCl_x was calculated to be 2.24~2.47 (lower part).

Experimental Results

Table Yield of TiCl, and Ti consumption rate.			
Exp. No.	TiCl ₄ feed rate, $r / g \cdot min^{-1}$	Yield of TiCl _x , R _{TiCly} (%)	Ti consumption ratio, <i>R</i> _{τi} ' (%)
3A	0.56	64	80
3B	0.16	46	93
3C	0.13	49	84

In order to establish a new semi-continuous and high-speed Ti production process based on the magnesiothermic reduction of titanium subchlorides, a novel synthetic process of titanium subchlorides (TiCl_x, x = 2, 3) by reaction of TiCl₄ with metallic Ti was investigated.

- Efficiency of TiCl_x formation produced by direct reaction of TiCl₄ with Ti was low.
- It was demonstrated that efficiency of TiCl_x synthesis can be improved when using molten MgCl₂ as a reaction medium.

Future Works

- More efficient production process of TiCl_x from TiCl₄
- Enrichment process of TiCl_x
 - → Establishment of a continuous and high-speed titanium production process

これ以後補足資料

Chapter I Excellent Material, Titanium!

Feature of Titanium

- 1. Light and high-strength
- 2. Corrosion resistance
- 3. Biocompatibility
- 4. Some titanium alloy: shape memory alloy,
 - super elasticity

Japan Aerospace Exploration Agency

http://village.infoweb.ne.jp/~etou/indexhome.htm

Institute of Industrial Science, The University of Tokyo

Power generation plant

Japan Titanium Society March 18, 2006, Active Metal 19

Chapter I Father of Titanium Industrial Production

William J. Kroll (1889.11.24-1973.3.30)

[William J. Kroll – A Luxembourg Scientist, Edited by Fondation Nicolas Lanners, Luxembourg 1998, Cover page.] Institute of Industrial Science, The University of Tokyo March 18, 2006, Active Metal 20

Chapter I Father of Ti Industrial Production

William J. Kroll (1889.11.24-1973.3.30)

[William J. Kroll – A Luxembourg Scientist, Edited by Fondation Nicolas Lanners, Luxembourg 1998, p.63.]

Chapter I Abundance of Titanium in the Earth's Crust

Element	Clarke No.	Rank	Element	Clarke No.
0 ⁸	49.50	16	⁷ N	0.03
¹⁴ Si	25.80	17	⁹ F	0.03
¹³ AI	7.56	18	³⁹ Rb	0.03
²⁶ Fe	4.70	19	⁵⁶ Ba	0.02
²⁰ Ca	3.39	20	⁴⁰ Zr	0.02
¹¹ Na	2.63	21	²⁴ Cr	0.02
¹⁹ K	2.40	22	³⁸ Sr	0.02
¹² Mg	1.93	23	²³ V	0.02
1H	0.87	24	²⁸ Ni	0.01
²² Ti	0.46	25	²⁹ Cu	0.01
¹⁷ CI	0.19	26	⁷⁴ W	6 × 10⁻³
²⁵ Mn	0.09	27	³ Li	6 × 10 ⁻³
¹⁵ P	0.08	28	⁵⁸ Ce	4.5 × 10 ⁻³
^{6}C	0.08	29	²⁷ Co	4 × 10 ⁻³
¹⁶ S	0.03	30	⁵⁰ Sn	4 × 10 ⁻³
	Element ⁸ O ¹⁴ Si ¹³ Al ²⁶ Fe ²⁰ Ca ¹¹ Na ¹⁹ K ¹² Mg ¹ H ²² Ti ¹⁷ Cl ²⁵ Mn ¹⁵ P ⁶ C ¹⁶ S	ElementClarke No. ^{8}O 49.50 ^{14}Si 25.80 ^{13}Al 7.56 ^{26}Fe 4.70 ^{20}Ca 3.39 ^{11}Na 2.63 ^{19}K 2.40 ^{12}Mg 1.93 1H 0.87 ^{22}Ti 0.46 ^{17}Cl 0.19 ^{25}Mn 0.09 ^{15}P 0.08 ^{6}C 0.08 ^{16}S 0.03	ElementClarke No.Rank ^{8}O 49.5016 ^{14}Si 25.8017 ^{13}Al 7.5618 ^{26}Fe 4.7019 ^{20}Ca 3.3920 ^{11}Na 2.6321 ^{19}K 2.4022 ^{12}Mg 1.9323 1H 0.8724 ^{22}Ti 0.4625 ^{17}Cl 0.1926 ^{25}Mn 0.0927 ^{15}P 0.0828 ^{6}C 0.0829 ^{16}S 0.0330	ElementClarke No.RankElement ^{8}O 49.5016 ^{7}N ^{14}Si 25.8017 ^{9}F ^{13}Al 7.5618 ^{39}Rb ^{26}Fe 4.7019 ^{56}Ba ^{20}Ca 3.3920 ^{40}Zr ^{11}Na 2.6321 ^{24}Cr ^{19}K 2.4022 ^{38}Sr ^{12}Mg 1.9323 ^{23}V ^{11}H 0.8724 ^{28}Ni ^{22}Ti 0.4625 ^{29}Cu ^{17}Cl 0.1926 ^{74}W ^{25}Mn 0.0927 ^{3}Li ^{15}P 0.0828 ^{58}Ce ^{6}C 0.0829 ^{27}Co ^{16}S 0.0330 ^{50}Sn

Titanium is the 10th most abundant element in the earth's crust.

Chapter I Current Status of Titanium Production

Production of Ti sponge in the world (2003)

[S. Nakamura: Industrial Rare Metals, (Tokyo, Japan: Arumu publish co., 2004), pp. 52–55.]

Chapter I Comparison with common metals

Metal	Iron	Aluminum	Titanium
Symbol	Fe	AI	Ti
Melting point (°C)	1536	660	1680
Density (g/cm ³ @25 °C)	7.9	2.7	4.5
Specific strength	4.1(Pure)	2.2(Pure)	5.1(Pure)
[(kgf/mm ²)/(g/cm ³)]	6.7(SUS304)	8.9(0.5Mg0.5Si)	24.6(6Al4V)
Clarke No.	4	3	10
Price (¥/kg)	50	600	3000
Production volume (t/world@2003)	9.6 x 10 ⁸	2.2 x 10 ⁷ 1/3	6.6 x 10 ⁴

Although titanium is the 10th most abundant element in the earth's crust, its production volume is very small. Institute of Industrial Science, The University of Tokyo March 18, 2006, Active Metal 25

Chapter I Production Process of Titanium Subchlorides

Chapter I

OHigh-purity Ti can be obtained. OMetal/salt separation is easy. OChlorine circulation is Established. OEfficient Mg electrolysis can be utilized. OReduction and electrolysis can be carried out independently. × Process is complicated. × Reduction process is a batch type.

× Production speed is low.

Reduction speed of Ti is less than 1 t/day·batch, which is one of the contributors to its high cost.

Difficulties in using TiO₂:

- Production of high-purity TiO₂ feed is expensive.
- Energy efficiency is low.
- Metal/salt separation is difficult.
- Purity control of obtained Ti is difficult.

Chapter II Experimental Apparatus

スポンジTiの表面に極 わずかTiCl₂が生成して いたが、分離・回収はで きなかった.

Achievement in the Previous Study

Pure metallic Ti was successfully obtained by the subhalide reduction process.

Institute of Industrial Science, The University of Tokyo March 18, 2006, Active Metal 33

Part I

Titanium Subchloride Synthesis by Reaction of TiCl₄ with Ti

Production Process of Titanium Subchlorides

Part I: Experimental Apparatus

Institute of Industrial Science, The University of Tokyo March 18, 2006, Active Metal 36
Part I: Experimental Apparatus

Appearance of the products after the synthesis experiment

Part I: Experimental Results

Part I: Experimental Results

Table	Analy	(Exp. 2D	^c)					
Tray	Concentration of element <i>i</i> , C_i (mass)						x value	
No.	Ti ^a	CI ^b	Fe ^a	Ni ^a	Cra	Mo ^a	in TiClx	
а	36.38	62.53	0.27	0.64	0.12	0.06	2.32	
b	36.13	62.90	0.17	0.69	0.06	0.05	2.35	
С	37.21	61.79	0.20	0.67	0.07	0.05	2.24	
d	37.20	62.54	0.10	0.07	0.06	0.02	2.27	
е	39.27	60.45	0.10	0.05	0.09	0.03	2.08	a t
f	38.82	60.72	0.22	<0.01	0.18	0.05	2.11	

Exp.	Con	x value					
No.	Ti ^b	CI c	Fe ^b	Ni ^b	Cr ^b	Mo ^b	in TiCl _x
2A	39.13	60.05	0.19	0.49	0.20	0.03	2.07
2B	36.01	63.34	0.16	0.31	0.16	0.04	2.38
2C ^d	38.46	60.45	0.68	0.24	0.17	<0.01	2.13
2D	37.50	61.82	0.18	0.42	0.10	0.04	2.23

Institute of Industrial Science, The University of Tokyo

- a: Determined by ICP-AES.b: Determined by potentiometric
- titration method.
- c: TiCl₄ feed rate, r = 0.12 g/min

- a: Average of 6 samples obtained from each tray.
- b: Determined by ICP-AES.
- c: Determined by potentiometric titration method.
- d: Stainless-steel tray was used.

March 18, 2006, Active Metal 40

Part I: Experimental Results

Efficiency of TiCl_x formation

Chapter V Production Process of Titanium Subchlorides

Chapter V Phase Diagram for the Ti–Mg–Cl system at 1073 K

Institute of Industrial Science, The University of Tokyo March 18, 2006, Active Metal 43

Chapter V Experimental Apparatus

Chapter V Experimental Results

Table Analytical results of the obtained TiCl₂ samples.

	Concentr	ration of e	. Yield	Calculated			
Sample	Ti ⁰	Fe ^c	AI c	CI d	(%)	value of x in TiCl _x	
Feed ^a	24.31 ^b	0.03	4.50 ^b	71.12 ^b	—	2.95	
4A _{top}	42.81	0.13	0.05	57.01	51	1.80	
4A _{bot}	43.18	0.05	0.63	56.14	51	1.76	
4B _{top}	37.10	0.06	0.19	62.61		2.28	
4B _{mid}	39.54	0.05	0.10	60.29	94	2.06	
4B _{bot}	40.25	0.07	0.10	59.56		2.00	

a: Supplied by Toho Titanium Co., Ltd.

b: Nominal value.

c: Determined by ICP-AES.

d: Determined by potentiometric titration method.

Chapter V Experimental Apparatus

TiCl₂の還元反応の温度履歴

副生成物の真空蒸留の温度履歴 1300 1000 $\overset{\circ}{\mathsf{C}}$ T/K途中の温度ドロップは副生成物の 1200 MgCl₂および余剰の金属マグネシウ 900 Ĥ Temperature, ムの蒸発により熱が奪われたものと 00 Temperature, 考えられる. 1100 $Mg(l) \rightarrow Mg(g)$ $(p^{\circ}_{MgCl_2} = 520 \text{ Pa } (5.1 \times 10^{-3} \text{ atm}), \Delta H^{\circ}_{evap, MgCl_2} = 188 \text{ kJ/mol } @$ 1150 K) $MgCl_2(l) \rightarrow MgCl_2(g)$ 1000 $: T_1$ (inner) ------ : T₂ (outer) 900 2 3 1 5 4 Time, $\Delta t'$ / ks

生成物の外観

Ti reaction container was not damaged.

Chapter V

Table Analytical results of the Ti sample recovered by leaching (4X) and vacuum distillation (4Y).

Code	Concentration of element i, <i>C</i> _i (mass%) ^a								Yield
_	Ti	F	е	Ni	Cr	Mg		AI	(%)
4Xa	99.71	0.	16	0.04	<0.01	0.06	0.	03	99
4Xb	99.19	0.	10	<0.01	0.05	0.50	0.	16	>89 ^b
4Ya	99.75	0.	22	<0.01	0.03	<0.01	<(.01	98
4Yb	99.72	L_Q.	16	<0.01	<0.01	<0.11	0.	10	99

a: Determined by XRF; the value excludes carbon and gaseous elements.

b: This value includes the uncertainty due to mechanical separation.

Experimental Results

生成物の微細構造

Coral like structure

(b) Vacuum distillation

Primary particles were sintered.

Chapter VI Experimental Apparatus

Mgの分散状態を変化させた実験

Chapter VI Experimental Apparatus

Institute of Industrial Science, The University of Tokyo

生成物の外観

Ti reaction container was not damaged.

生成物の外観

Experimental Results

生成物の外観

Exp.	Concentration of element i, C_i (mass%) ^a										
	Ti	Fe	Ni	Cr	Mg	AI	(%)				
5A ^c	96.35	0.13	<0.01	0.03	0.02	3.47	81				
5B ^d	99.37	0.16	<0.01	0.02	<0.01	0.44	99				
$5C^{b,d}$	95.79	1.74	0.33	0.36	<0.01	1.77	80				
5D °	99.26	0.29	<0.01	<0.01	0.10	0.36	66				
5E ^c	99.52	0.12	<0.01	<0.01	0.11	0.24	91				
5X ^e	99.04	0.18	0.02	0.02	0.09	0.65	82				
5Y ^e	99.18	0.50	<0.01	<0.01	0.09	0.21	87				

Table Analytical results of the Ti sample.

a: Determined by XRF, and the value excludes carbon and gaseous elements.

b: Stainless-steel reaction container was used.

c: Recovered by leaching.

d: Recovered by vacuum distillation.

e: Recovered by draining and vacuum distillation.

Experimental Results

(a) TiCl₃: 19.7 g, leaching

Coral like structure

(b) TiCl₃: 19.8 g, vacuum distillation

Primary particles were sintered.

(a) TiCl₃: 102 g, leaching

Coral like structure

(b) TiCl₃: 100 g, draining and vacuum distillation

Primary particles were sintered.

Chapter VII

Epilogue

Aluminum was changed from a rare metal to a common metal by the process innovation, and it contributed to develop our society.

Can titanium be a common metal?

Fig. The table centerpiece made of aluminum, which was crafted for Emperor Napoleon III in 1858. (Carnegie Museum of Art, Pittsburgh, Pennsylvania, cover page of JOM, Nov. 2000)

Chapter I Gibbs Energy of Formation of Chloride

Institute of Industrial Science, The University of Tokyo

Chapter I

Vapor Pressure

Fig. Vapor pressure of several chemical species. [Ref. I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim, (1989).]

Chapter I

Vapor Pressure

Fig. Vapor pressure of several chemical species. [Ref. I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim, (1989).]

Chapter I Key Factors of the Development of a New Titanium Reduction Process

Vapor Pressure

	Advantages	Disadvantages
Kroll	High purity titanium available Easy metal / salt separation Established chlorine circulation Utilizes efficient Mg electrolysis Reduction and electrolysis operation can be carried out independently	 Complicated process Slow production speed Batch type process
FFC	Simple process Semi-continuous process	 Difficult metal / salt separation Reduction and electrolysis have to be carried outsimultaneously Sensitive to carbon and iron contamination Low current efficiency
OS	Simple process Semi-continuous process	 Difficult metal / salt separation Sensitive to carbon and iron contamination Low current efficiency
EMR / MSE	Resistant to iron and carbon contamination Semi-continuous process Reduction and electrolysis operation can be carried out independently	 Difficult metal / salt separation when oxide system Complicated cell structure Complicated process
PRP	Effective control of purity and morphology Flexible scalability Resistant to contamination Small amount of fluxes necessary	 × Difficult recovery of reductant × Environmental burden by leaching
This study	High speed reduction process Semi-continuous process Titanium scrap enable Facilities for Kroll process can be utilized	× Difficulty of TiCl ₂ handling Multiple reduction process

1. $TiCl_4$ is dropped into a reactor.

2. TiCl₄ vaporizes. TiCl₄ (I) \rightarrow TiCl₄ (g) $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ TiCl₄ TiCl₄ Mg MgCl₂

3. A part of gaseous $TiCl_4$ is reduced to $TiCl_2$ by Mg, and $TiCl_2$ dissolves into molten MgCl₂.

 $TiCl_4 (g) + Mg (I) \rightarrow TiCl_2 (I) + MgCl_2 (I)$

4. TiCl₂ is reduced to Ti by Mg. TiCl₂ (I) + Mg (I) \rightarrow Ti (s) + MgCl₂ (I)

5. A part of gaseous TiCl₄ is directly reduced to Ti by Mg.

 $TiCl_4$ (g) + 2 Mg (l) \rightarrow Ti (s) + 2 MgCl₂ (l)

Table Physical properties of chemical species used in this study.									
Symbol of chemical	mbol of Name of Molecular	Molecular	Density at 20 °C	Melting point,		Boiling point,		Sublimation point	
species	species	weight	d_{20} / g· cm ⁻³	<i>T</i> _m ' / °C	<i>T</i> _m / K	<i>T</i> _b ' / °C	<i>T</i> _b / K	<i>T</i> ₅' / °C	<i>T</i> s / K
Ti	Titanium	47.88 ^a	4.5 ^a	1680 ^a	1953 ^a	3262 ^a	3535 ^a	a	a
				1660 ^d	1933 ^d	3300 ^d	3573 ^d	d	d
TiCl	Titanium (II)	118.77 ^b	3.13 ^c	1035 ^c	1308 ^c	1500 ^c	1773 ^c	c	c
	chloride			e	e	e	e	1307 ^e	1580 ^e
TiCl₃	Titanium (III) chloride	154.22 ^b	no data	e	e	e	e	830 ^e	1103 ^e
T:0	Titanium (VI)	100 C7 b	.67 ^b 1.702 ^c	-24.1 ^c	249.1 ^c	136.5 ^c	409.7 ^c	c	_c
IICI4	chloride	189.67 ~		-24.1 ^e	249.1 ^e	134.9 ^e	408 ^e	_e	e
Mg	Magnesium	24.31 ^a	1.74 ^a	659 ^a	932 ^a	1103 ^a	1376 ^a	a	a
				649 ^d	922 ^d	1090 ^d	1363 ^d	d	d
MgCl ₂ MgCl ₂ (II) chloride	Magnesium	05 01 b	2.325 ^c	714 ^c	987 ^c	1412 ^c	1685 ^c	c	c
	(II) chloride	95.21		714 ^d	987 ^d	1410 ^d	1683 ^d	d	d
Cl ₂	Chlorine	70.90 ^b	3.21 x 10 ^{-3 d}	-101 ^c	172 ^c	-34.6 ^c	238.6 ^c		C
				-101 ^d	172 ^d	-34.1 ^d	239.1 ^d	d	d

a: Kinzoku Data Book, 3rd ed., (ed. by Japan Inst. Metals, Maruzen, Tokyo, 1993) pp. 1-11.

b: Calculated from reference a.

c: M. Nakahara: *Dictionary of Inorganic Compounds & Complexes*, (Koudansya, Tokyo, 1997) p 87.

d: R. Kubo et al. : Rikagaku Jiten, 4th ed. , (Iwanami Shyoten, Tokyo, 1992) pp 159-784.

e: I. Barin: *Thermochemical Data of Pure Substances*, (VCH Verlagsgesellschaft, Weinheim, 1989)

Table Temperature at specific vapor pressure					
	Temperatur pressure 0.0	e at vapor 01 atm	Temperature at vapor pressure 0.1 atm		
	<i>T</i> ' _{p0.01} / °C	T _{p0.01} / K	<i>T</i> ' _{p0.1} / °C	Т' _{р0.1} / К	
TiCl ₂	1010	1283	1133	1407	
TiCl ₃	613	887	707	980	
Mg	701	975	859	1133	
MgCl ₂	922	1195	1085	1358	

Composition of titanium tri-chloride ^a used in this study					
Element i	Composition of element i				
	x' _i (mass%)	x _i (mol%)			
Ti	24.3	18.9			
CI	71.1	74.8			
AI	4.5	6.3			
TiCl _{2.96}	77.6 ^b	75.1 ^b			
AICI ₃	22.4 ^b	24.9 ^b			

a: Supplied by Toho titanium Co., Ltd.

b: Calculated value.

Tahla

This chemical is produced as a catalyst for polymerization of polypropylene.

TiCl_x生成反応のメカニズム

Institute of Industrial Science, The University of Tokyo Ma

Chapter I Enrichment of TiCl_x

T = 1000 K

Fig. 1-3 Schematic illustration of (a) the reduction process, and (b) vacuum distillation process for titanium production based on the Kroll process.

Phase diagram for Ti-Fe binary system

