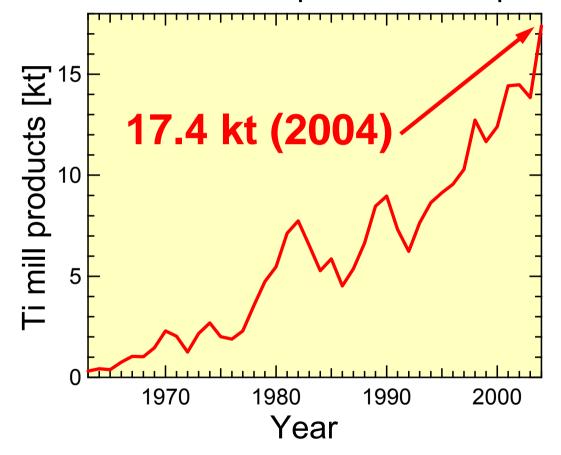
Titanium Subchloride Synthesis by


Reaction of Titanium with TiCl₄

Osamu Takeda^{1,2} and Toru H. Okabe²

Graduate student
 Institute of Industrial Science, The University of Tokyo

Current Status of Titanium Production

Production of Ti mill products in Japan

- Demand for Ti is rapidly increasing.
- Limited supply of Ti caused serious shortage of Ti in the market.

 A new production process with high productivity is urgently required.

[S. Nakamura: Industrial Rare Metals,

(Tokyo, Japan: Arumu Publish co., 2004), pp. 52–55.]

Purpose of this Study

The Kroll process

Feed: TiCl₄

- Huge exothermic reaction
- →Reduction speed is extremely slow, and 10 days are required for producing 10 ton of Ti.
- →Vacuum distillation and cooling process are also "time consuming".

Development of a continuous and high-speed Ti production process based on the magnesiothermic reduction of Ti subchlorides (Subhalide reduction process)

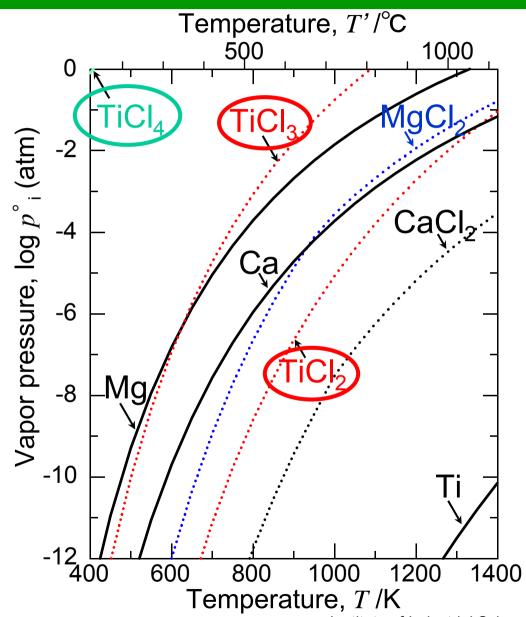
Physical and Chemical Properties of Titanium Chlorides

	TiCl ₄	TiCl ₃	TiCl ₂
Appearance			
Color	Clear	Red	Black
Molecular weight (g/mol)	189.7	154.2	118.8
Density (g/cm³)	1.70	No data	3.13
Melting point (°C)	-24.1	_	_
Boiling point (°C)	136.5	_	_
Sublimation point (°C)	-	830	1307
ΔG°_{f} at 800°C (kJ/mol Cl ₂)	-317	-327	-344
ΔG°_{f} at 800°C (kJ/mol Ti)	-637	–491	-344
Vapor pressure at 800°C (atm)	_	0.74	1.2 × 10 ⁻⁴

Reduction Heat

Titanium subchlorides •Low reduction heat

At 1073 K


①
$$TiCl_4(g) + Mg(l) \rightarrow TiCl_2(s) + MgCl_2(l)$$

 $\Delta H^{\circ} = -339 \text{ kJ}, \ \Delta G^{\circ} = -185 \text{kJ}$

This is suitable for developing high speed process

②
$$TiCl_2(s) + Mg(l) \rightarrow Ti(s) + MgCl_2(l)$$

 $\Delta H^{\circ} = -91 \text{ kJ}, \Delta G^{\circ} = -130 \text{ kJ}$

③
$$TiCl_4(g) + 2 Mg(l) \rightarrow Ti(s) + 2 MgCl_2(l)$$

(=1)+2) $\Delta H^{\circ} = -430 \text{ kJ} \Delta G^{\circ} = -315 \text{ kJ}$

Vapor Pressure

Titanium subchlorides

- Low vapor pressure
- Stable as a condensed phase

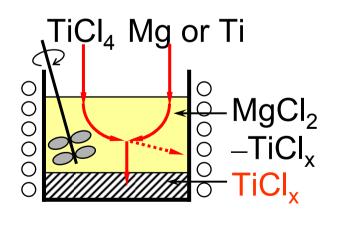
[I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim, (1989).]

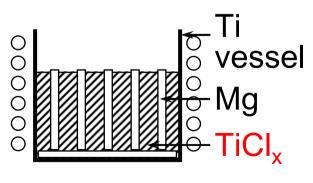
New Titanium Production Process Using Titanium Subhalides

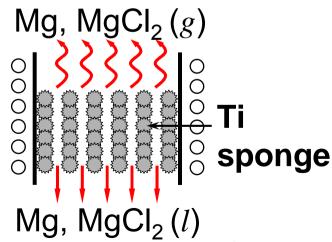
①
$$TiCl_4(l, g) + Mg(l, g) \rightarrow TiCl_x(s, l) + MgCl_2(l)$$

 $TiCl_4(l, g) + Ti(s, scrap) \rightarrow TiCl_x(s, l)$
 $TiCl_x(s, l) + Mg(l, g) \rightarrow Ti(s) + MgCl_2(l, g)$

Step 1:

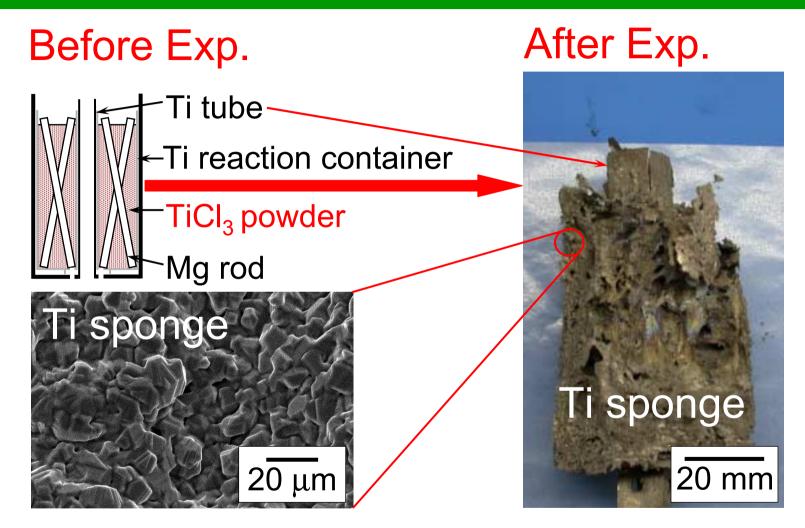

High-speed production High-speed of Ti subchlorides and enrichment of TiCl


Step 2:


magnesiothermic reduction of TiCl_v

Step 3:

High-speed removal of Mg and MgCl₂ from Ti sponge by draining and vacuum distillation

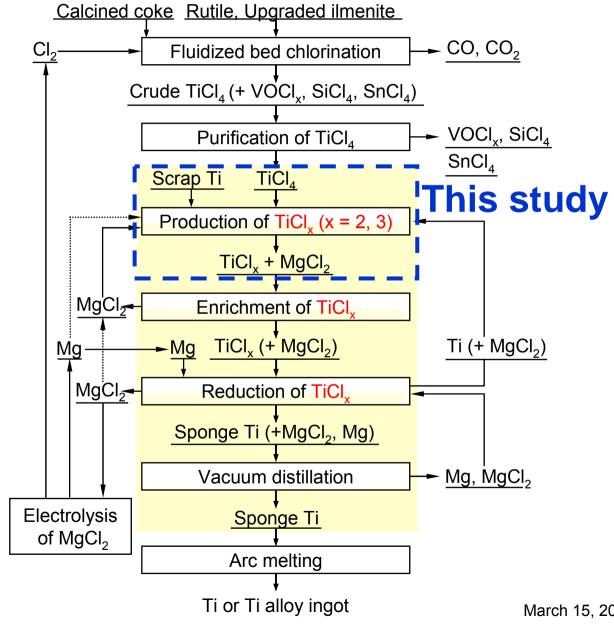


Features of the New Process

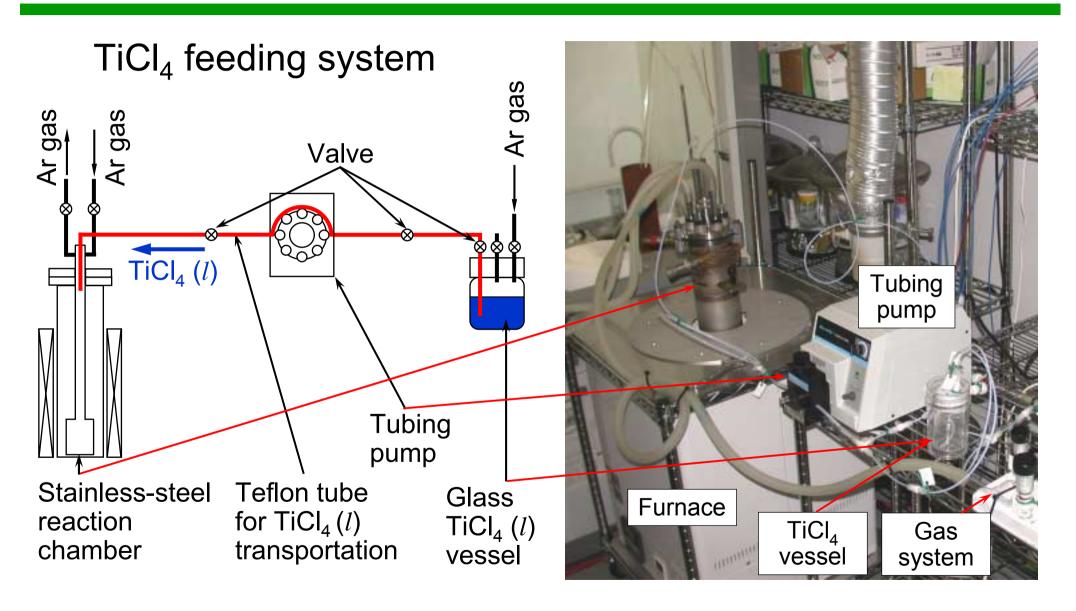
Table Comparison of the Kroll process and new process

	Kroll process	New process			
	•	·			
Process type	Batch-type, limited speed	(Semi-)Continuous, high speed			
Feed material	$TiCl_4(l, g)$	$TiCl_2$ or $TiCl_3$ (s, l)			
Heat of reduction, ΔH° / kJ mol Ti	High (-434)	Low (-94 ~ -191)			
Reactor material	Mild steel (Fe contamination unavoidable)	Ti (No Fe contamination)			
Reactor size	Large (Crush and melt)	Small (No crush and			
	,	direct melt)			
Flux, sealant	Not used	MgCl ₂ , Ti			
Common	 Magnesiothermic reduction of chloride 				
features	 Removal of MgCl₂ and Mg from Ti sponge by draining and vacuum distillation 				
	Production of high-purity Ti with low oxygen content				

Achievement in the Previous Study

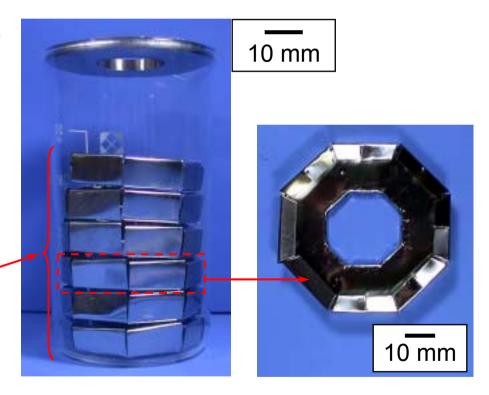

Pure metallic Ti was successfully obtained by the subhalide reduction process.

Part I


Titanium Subchloride Synthesis by Reaction of TiCl₄ with Ti

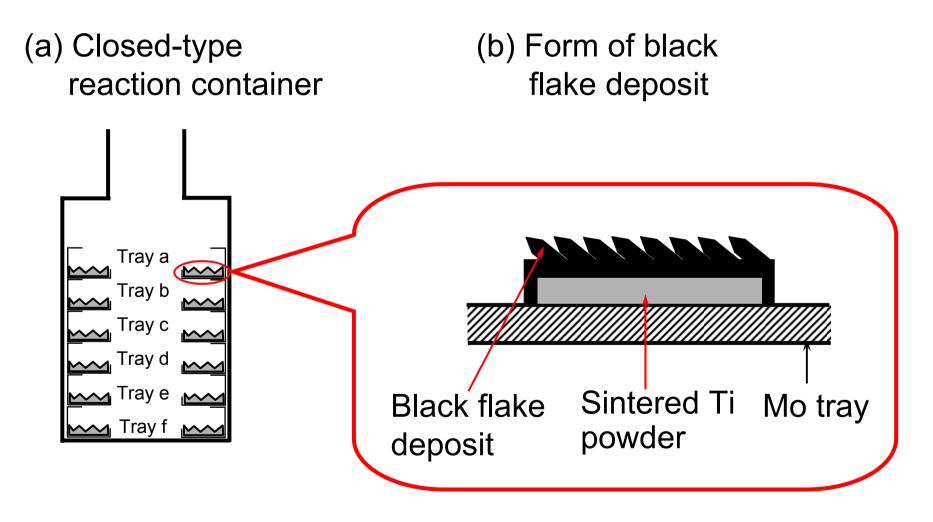
Production Process of Titanium Subchlorides

Part I: Experimental Apparatus



Part I: Experimental Apparatus

(a) Closed-type reaction container $TiCl_4$ (*l*, *g*) flow (0.12~0.64 g/min) -Thermocouple (T_2) 0 $\stackrel{\bigcirc}{\sim}$ Thermocouple (T_1) 0 Heating element 0 Alumina crucible 0 Stainless-steel 0 outer chamber 0 Tray a ⊕Stainless-steel Tray b 0 Tray c _ reaction container 0 Tray d <u> </u> Mo tray 0 Tray e_{∞∞∞} → Ti powder (6.3 g) 0 Tray f


10 mm

(b) Mo trays used for TiCl_x synthesis tentatively installed in transparent beaker.

Ti (s) + TiCl₄ (g) \rightarrow 2 TiCl₂ (s); ΔG_f° = -18.9 kJ/mol @ 1273 K

Appearance of the products after the synthesis experiment

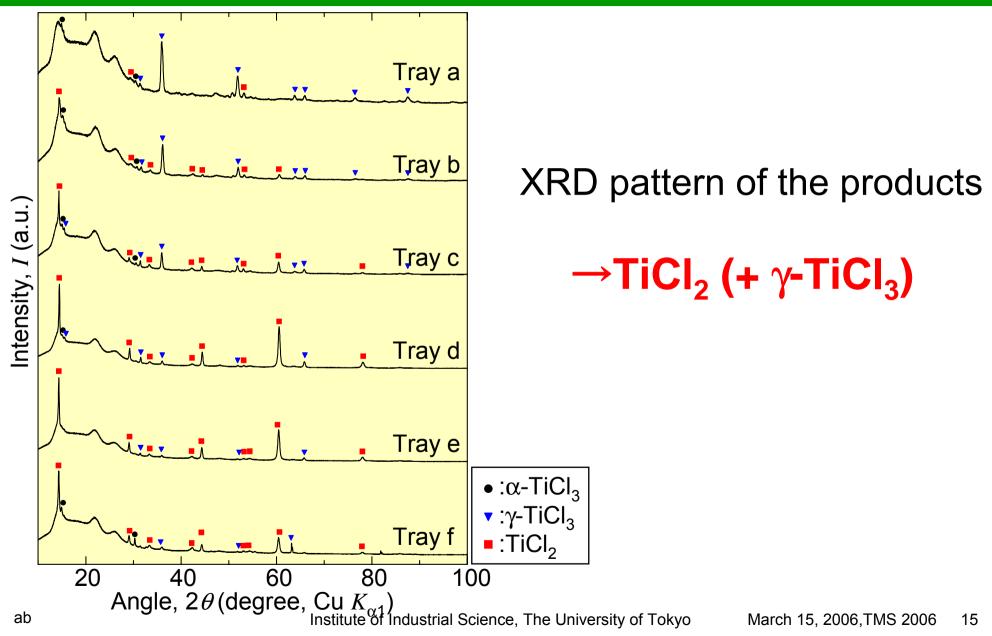


Table Analytical results of the obtained samples (Exp. 2Dc).

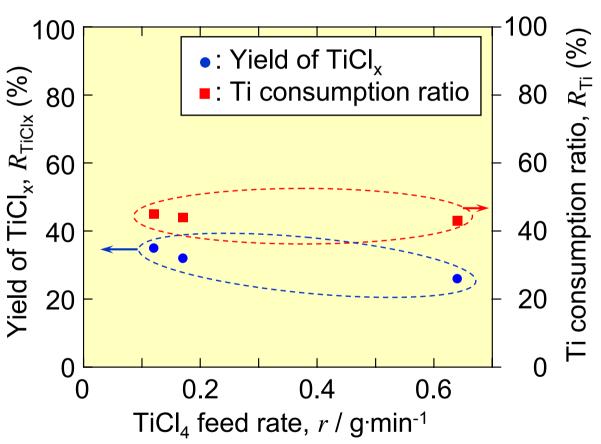
Tray	Co	Concentration of element i , C_i (mass%)						
No.	Ti a	CI b	Fe ^a	Ni ^a	Cr ^a	Mo ^a	in TiClx	
а	36.38	62.53	0.27	0.64	0.12	0.06	2.32	
b	36.13	62.90	0.17	0.69	0.06	0.05	2.35	
С	37.21	61.79	0.20	0.67	0.07	0.05	2.24	
d	37.20	62.54	0.10	0.07	0.06	0.02	2.27	
е	39.27	60.45	0.10	0.05	0.09	0.03	2.08	
f	38.82	60.72	0.22	<0.01	0.18	0.05	2.11	

a: Determined by ICP-AES.

c: $TiCl_{4}$ feed rate, r = 0.12 g/min

Exp.	, , ,					x value	
No.	Ti ^b	Clc	Fe ^b	Ni ^b	Cr b	Mo ^b	in TiCl _x
2A	39.13	60.05	0.19	0.49	0.20	0.03	2.07
2B	36.01	63.34	0.16	0.31	0.16	0.04	2.38
2C ^d	38.46	60.45	0.68	0.24	0.17	<0.01	2.13
2D	37.50	61.82	0.18	0.42	0.10	0.04	2.23

a: Average of 6 samples obtained from each tray.


b: Determined by potentiometric titration method.

b: Determined by ICP-AES.

c: Determined by potentiometric titration method.

d: Stainless-steel tray was used.

Efficiency of TiCl_x formation

- •Yield of the recovered TiCl_x sample was 23~35%, and it decreased with increasing TiCl₄ feed rate.
- •Consumption ratio of the feed Ti was 42~45%, and the ratio was independent of TiCl₄ feed rate.

$$\begin{array}{|c|c|c|c|c|}\hline \text{TiCl}_4(g) + \text{TiCl}_2(s) \rightarrow 2 \text{ TiCl}_3(g) \\ \hline \text{Feed TiCl}_4(g) & \text{TiCl}_3(g) \\ \hline & & \Delta G_{\mathrm{f}}^{\circ} = -75.6 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4 \text{ kJ/mol } @ 1273 \text{ K} \\ \hline & \Delta G_{\mathrm{f}}^{\circ} = -28.4$$

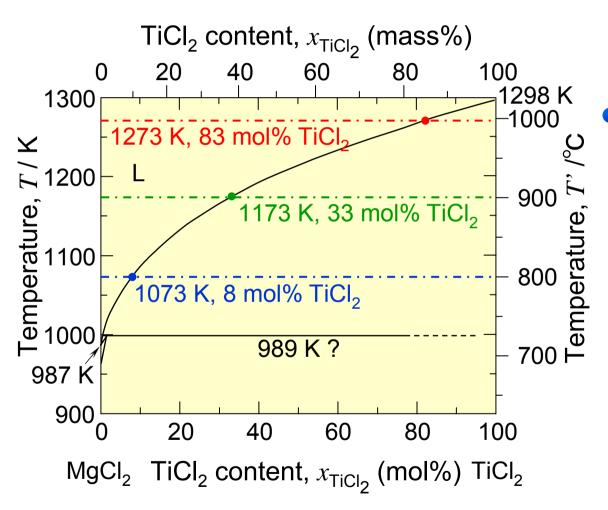
Reason for low efficiency of TiCl_x formation

- 1. TiCl₃ formed, evaporated, and dissipated (eq. (a)).
- 2. TiCl₂ solid film formed on surface of metallic Ti hindered chlorination reaction of metallic Ti.
- 3. TiCl₂ was converted to TiCl₃ (eq. (b)).

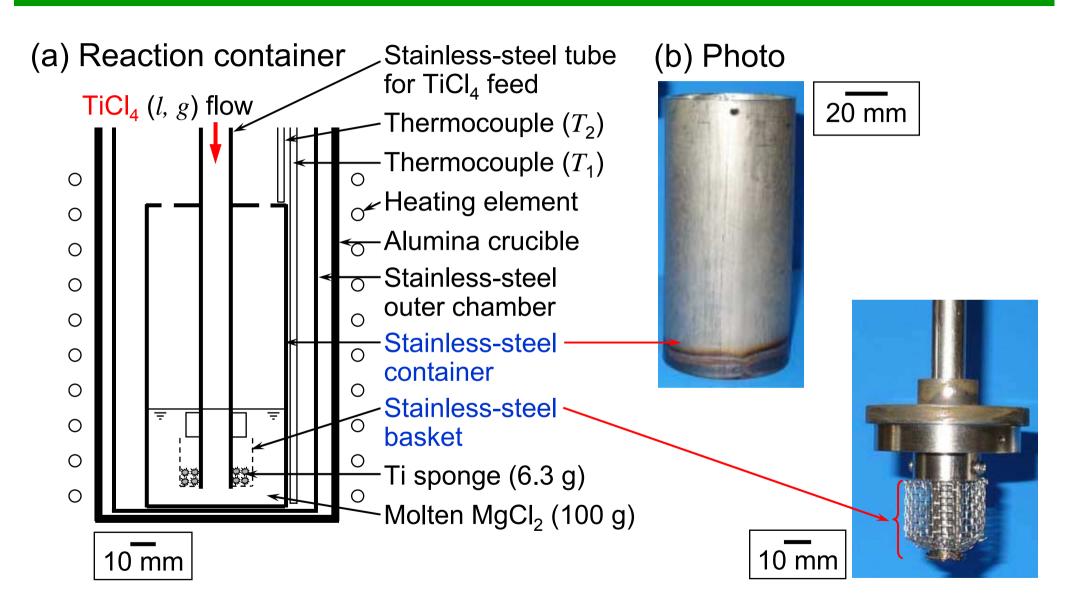
For improving efficiency of TiCl_x formation

- 1.TiCl₂ formed on surface of metallic Ti has to be removed.
- 2. Reaction of TiCl₂ with TiCl₄ has to be prevented.

Part II


Titanium Subchloride Synthesis by Reaction of TiCl₄ with Ti in Molten Salts

Institute of Industrial Science, The University of Tokyo


Part II: Experimental Procedure

Phase diagram for the MgCl₂–TiCl₂ system

• MgCl₂ is expected to work as a medium that removes TiCl₂ film formed on the surface of metallic titanium by dissolving and accumulates TiCl₂ in its interior.

Part II: Experimental Procedure

Status of solidification of the salt

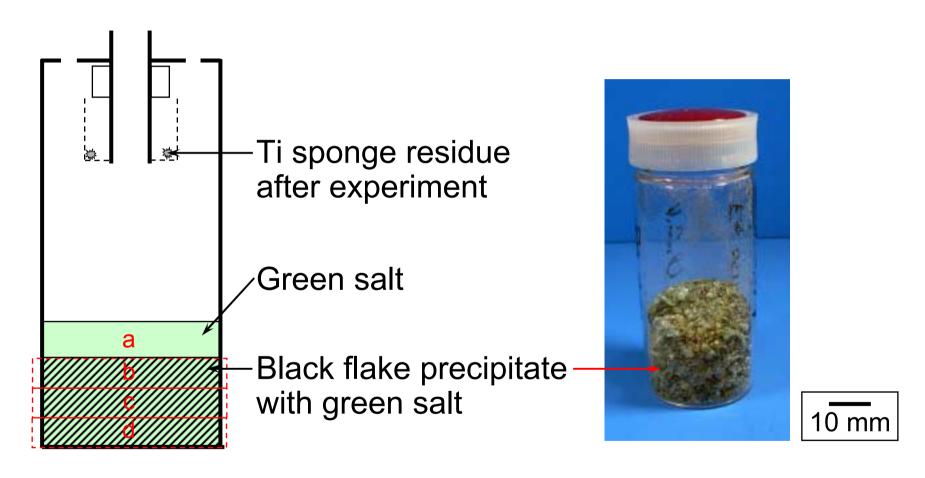
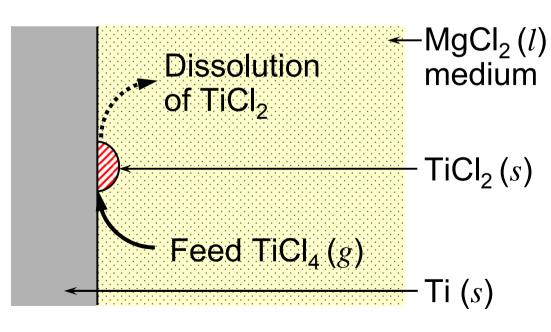


Table Analytical results of the obtained samples (Exp. 3A).

Posi	Concentration of element i , C_i (mass%)						x value
tion	Ti ^a	CI b	Mg ^a	Fe ^a	Ni ^a	Cr ^a	in TiCl _x
а	2.33	74.63	23.01	0.03	<0.02	<0.01	4.35
b	7.07	72.25	20.62	0.01	<0.02	0.04	2.31
С	8.87	71.85	19.24	0.01	<0.02	0.03	2.39
d	9.58	71.34	18.95	0.08	<0.02	0.04	2.26


a: Determined by ICP-AES.

b: Determined by potentiometric titration method.

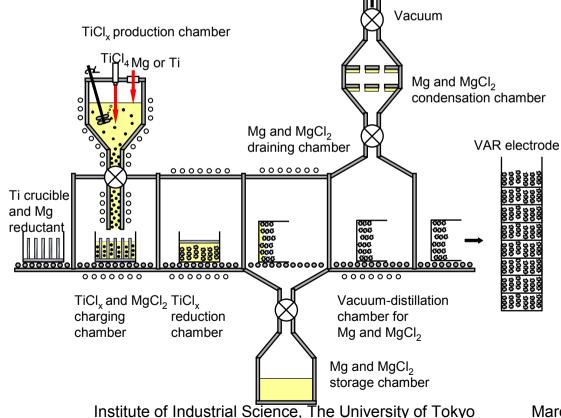
- Concentration of Ti in the salt recovered from the upper part of the reaction container was low, and that in the salt recovered from the lower part of the reaction container was relatively high.
- Value of x in MgCl₂—TiCl_x was calculated to be 2.24~2.47 (lower part).

Table Yield of TiCl, and Ti consumption ratio.

Exp. No.	TiCl ₄ feed rate, r / g· min-1	Yield of TiCl _x , $R_{\text{TiCl}_{x}}$ (%)	Ti consumption ratio, R_{Ti}' (%)
3A	0.56	64	80
3B	0.16	46	93
3C	0.13	49	84

 It was demonstrated that efficiency of TiCl_x formation was improved by using molten MgCl₂ as a reaction medium.

Conclusions


In order to establish a new semi-continuous and high-speed Ti production process based on the magnesiothermic reduction of titanium subchlorides, a novel synthetic process of titanium subchlorides (TiCl_x, x = 2, 3) by reaction of TiCl₄ with metallic Ti was investigated.

- Efficiency of TiCl_x formation produced by direct reaction of TiCl₄ with Ti was low.
- It was demonstrated that efficiency of TiCl_x synthesis can be improved when using molten MgCl₂ as a reaction medium.

Future Works

- More efficient production process of TiCl_x from TiCl₄
- Enrichment process of TiCl_x

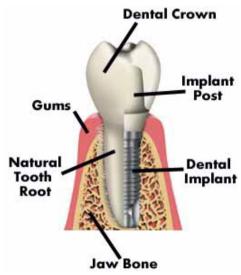
→ Establishment of a continuous and high-speed titanium production process

これ以後補足資料

Chapter I

Excellent Material, Titanium!

Feature of Titanium

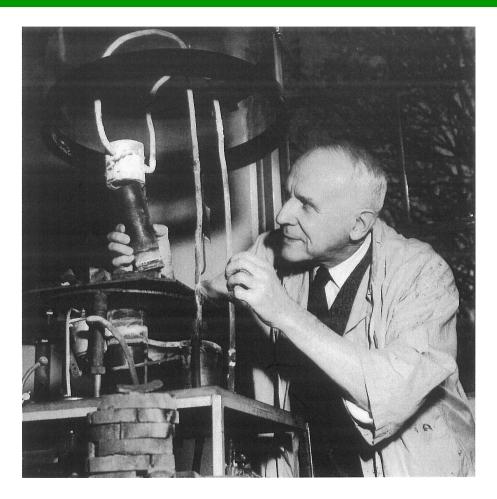

- 1. Light and high-strength
- 2. Corrosion resistance
- 3. Biocompatibility
- 4. Some titanium alloy: shape memory alloy, super elasticity

Aerospace industry

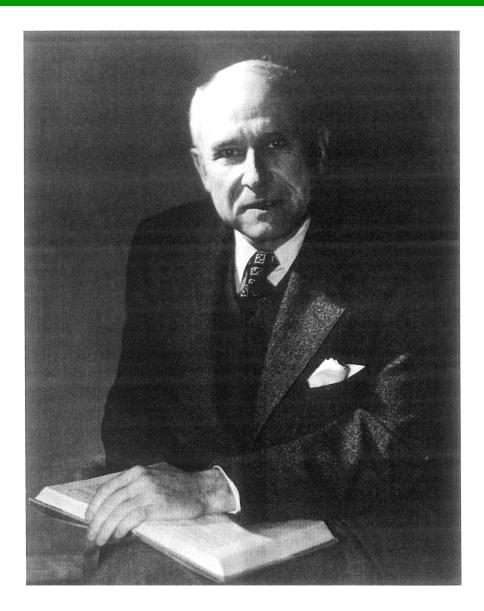
Japan Aerospace Exploration Agency

Dental material

http://village.infoweb.ne.jp/~etou/indexhome.htm

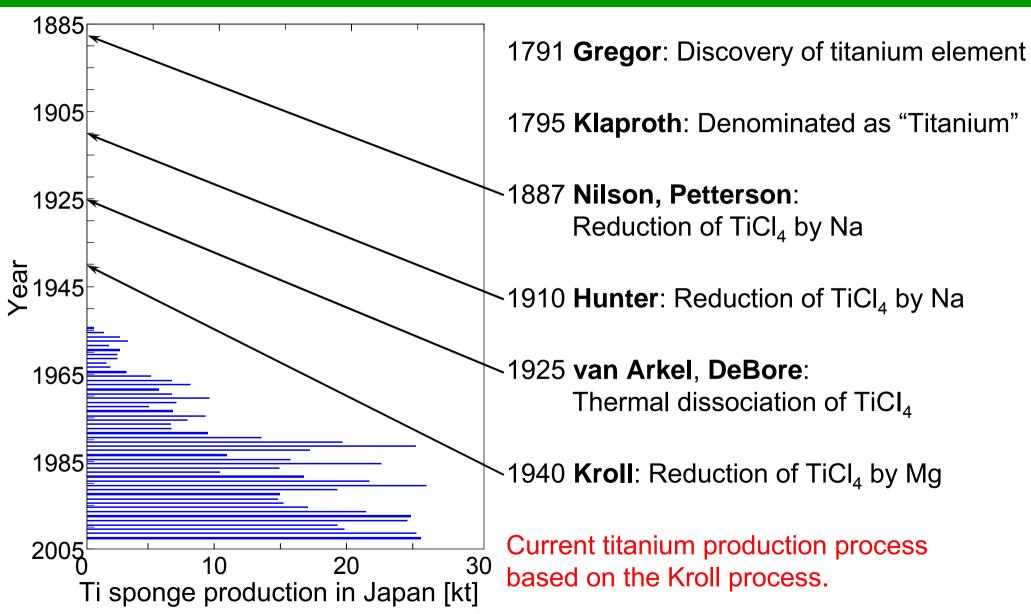

Power generation plant

Japan Titanium Society


March 15, 2006, TMS 2006

Chapter I Father of Titanium Industrial Production

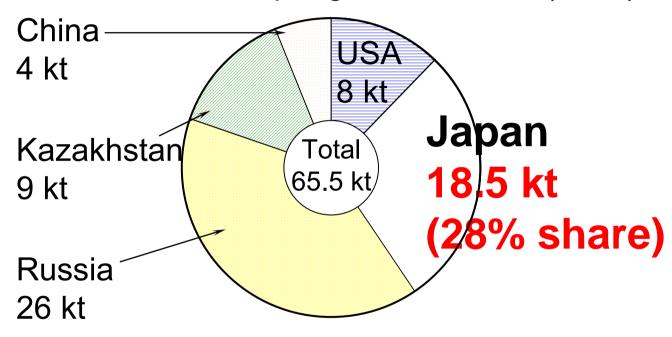
William J. Kroll (1889.11.24-1973.3.30)


Chapter I Father of Ti Industrial Production

William J. Kroll (1889.11.24-1973.3.30)

[William J. Kroll – A Luxembourg Scientist, Edited by Fondation Nicolas Lanners, Luxembourg 1998, p.63.]

Chapter I History of Titanium Metallurgy

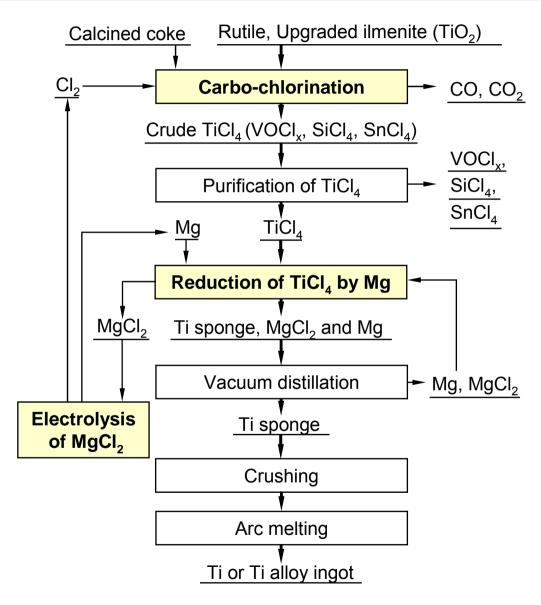

Chapter I Abundance of Titanium in the Earth's Crust

Rank	Element	Clarke No.	Rank	Element	Clarke No.
1	8O	49.50	16	⁷ N	0.03
2	¹⁴ Si	25.80	17	⁹ F	0.03
3	¹³ AI	7.56	18	³⁹ Rb	0.03
4	²⁶ Fe	4.70	19	⁵⁶ Ba	0.02
5	²⁰ Ca	3.39	20	⁴⁰ Zr	0.02
6	¹¹ Na	2.63	21	²⁴ Cr	0.02
7	¹⁹ K	2.40	22	³⁸ Sr	0.02
8	¹² Mg	1.93	23	²³ V	0.02
9	¹ H	0.87	24	²⁸ Ni	0.01
10	²² Ti	0.46	25	²⁹ Cu	0.01
11	¹⁷ CI	0.19	26	⁷⁴ W	6 × 10 ⁻³
12	²⁵ Mn	0.09	27	³ Li	6×10^{-3}
13	¹⁵ P	0.08	28	⁵⁸ Ce	4.5×10^{-3}
14	^{6}C	0.08	29	²⁷ Co	4 × 10 ⁻³
15	¹⁶ S	0.03	30	⁵⁰ Sn	4 × 10 ⁻³

Titanium is the 10th most abundant element in the earth's crust.

Chapter I Current Status of Titanium Production

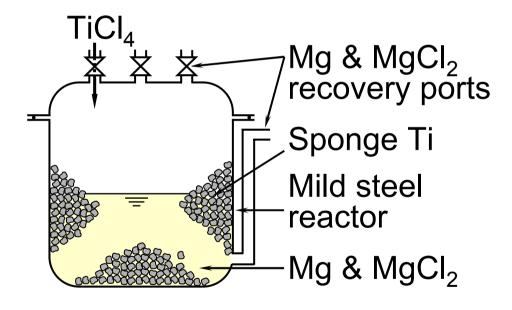
Production of Ti sponge in the world (2003)


[S. Nakamura: Industrial Rare Metals, (Tokyo, Japan: Arumu publish co., 2004), pp. 52–55.]

Chapter I Comparison with common metals

Metal	Iron	Aluminum	Titanium
Symbol	Fe	Al	Ti
Melting point (°C)	1536	660	1680
Density (g/cm ³ @25 °C)	7.9	2.7	4.5
Specific strength	4.1(Pure)	2.2(Pure)	5.1(Pure)
[(kgf/mm ²)/(g/cm ³)]	6.7(SUS304)	8.9(0.5Mg0.5Si)	24.6(6Al4V)
Clarke No.	4	3	10
Price (¥/kg)	50	600	3000
Production volume (t/world@2003)	9.6 x 10 ⁸	2.2×10^7 1/3	6.6×10^4
		T 1/15000	

Although titanium is the 10th most abundant element in the earth's crust, its production volume is very small.
Institute of Industrial Science, The University of Tokyo

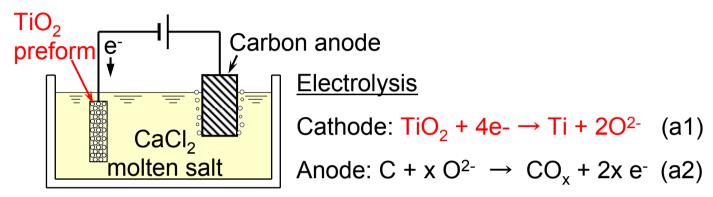

Chapter I Production Process of Titanium Subchlorides

Chapter I

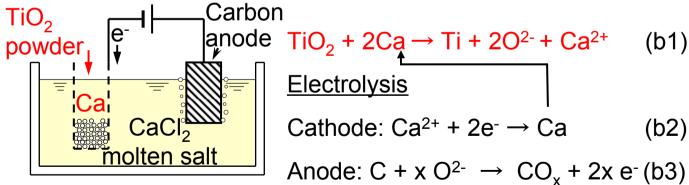
The Kroll Process

Chlorination:
$$TiO_2 + C + 2CI_2 \rightarrow TiCI_4 + CO_2$$

Reduction: $TiCI_4 + 2Mg \rightarrow Ti + 2MgCI_2$
Electrolysis: $MgCI_2 \rightarrow Mg + CI_2$

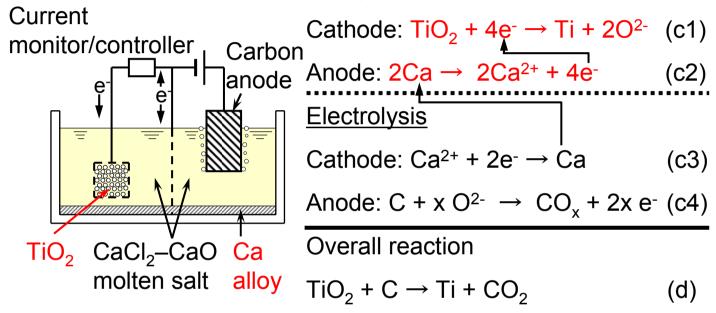


- OHigh-purity Ti can be obtained.
- OChlorine circulation is Established.
- OEfficient Mg electrolysis can be utilized.
- OReduction and electrolysis can be carried out independently.
- × Process is complicated.
- × Reduction process is a batch type.
- × Production speed is low.


Reduction speed of Ti is less than 1 t/day-batch, which is one of the contributors to its high cost.

Chapter I Direct Reduction Processes of Titanium Oxide

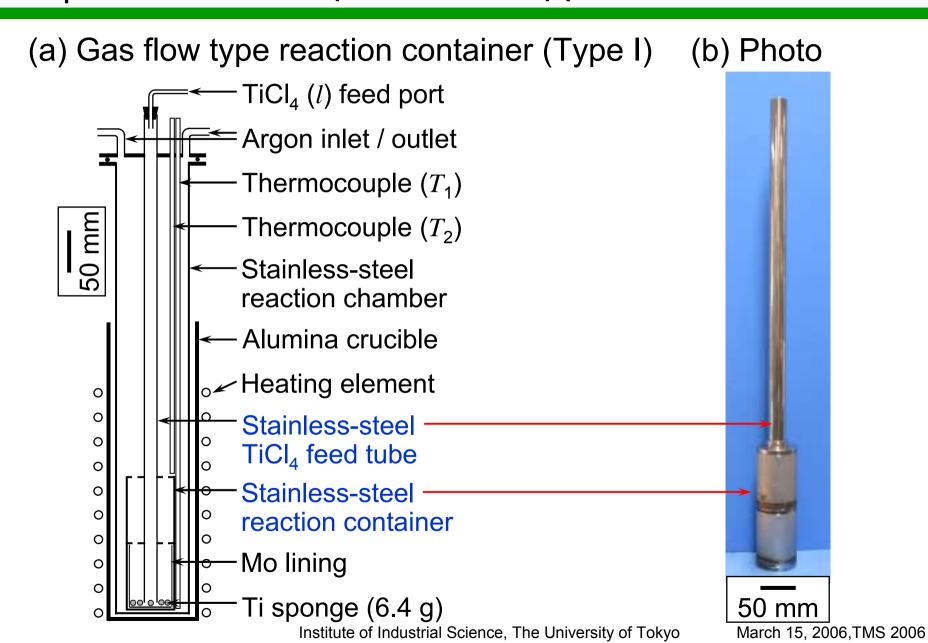
(a) FFC Process (Fray et al.)



(b) OS Process (Ono & Suzuki)

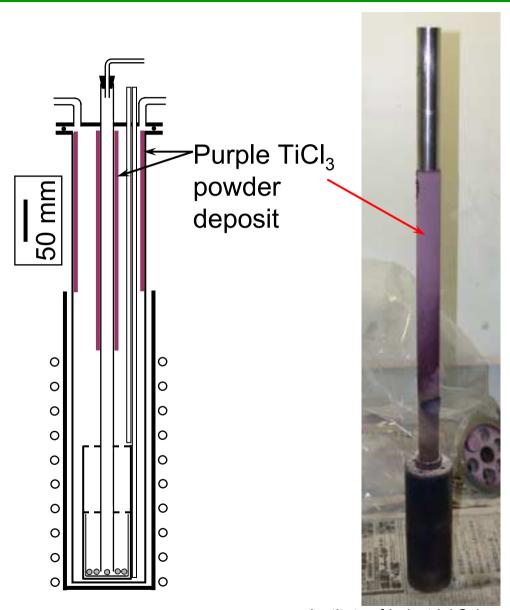
Chapter I Direct Reduction Processes of Titanium Oxide

(c) EMR/MSE Process (Okabe et al.)



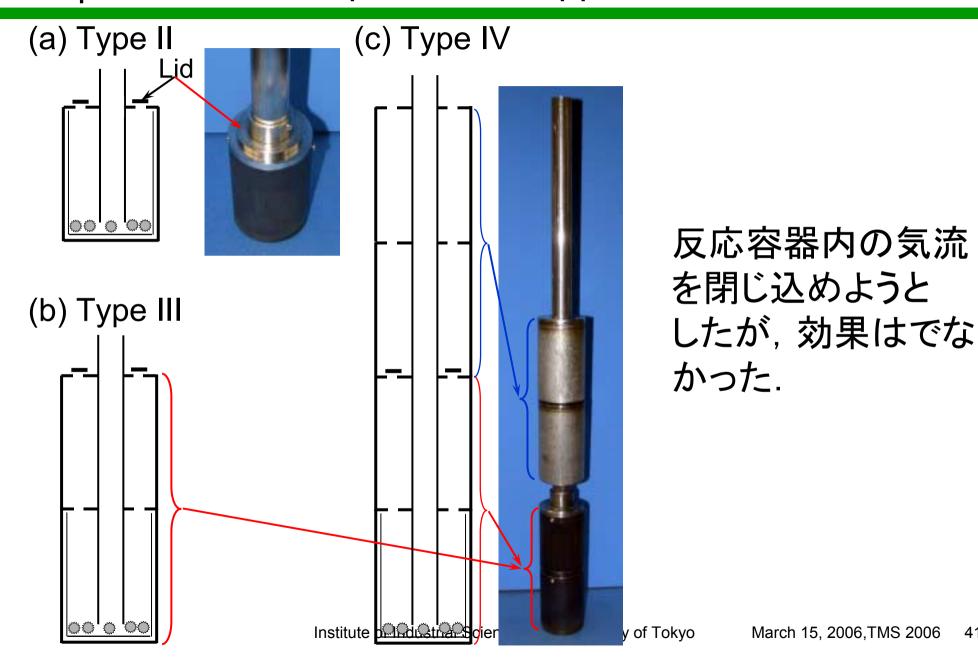
Difficulties in using TiO₂:

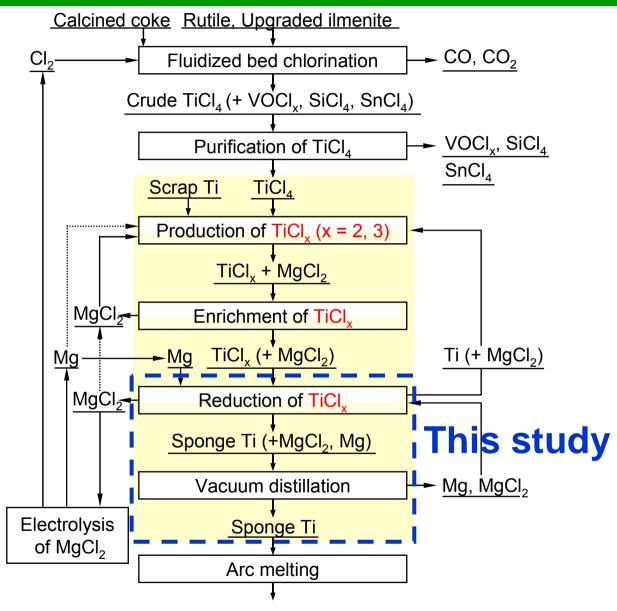
- Production of high-purity TiO₂ feed is expensive.
- Energy efficiency is low.
- •Metal/salt separation is difficult.
- Purity control of obtained Ti is difficult.


Chapter II

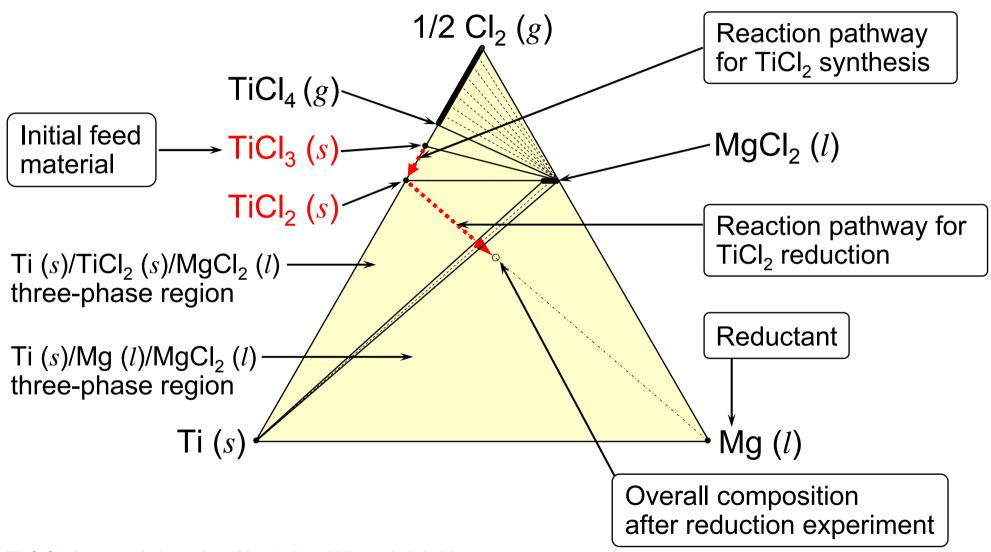
Experimental Apparatus

Chapter II

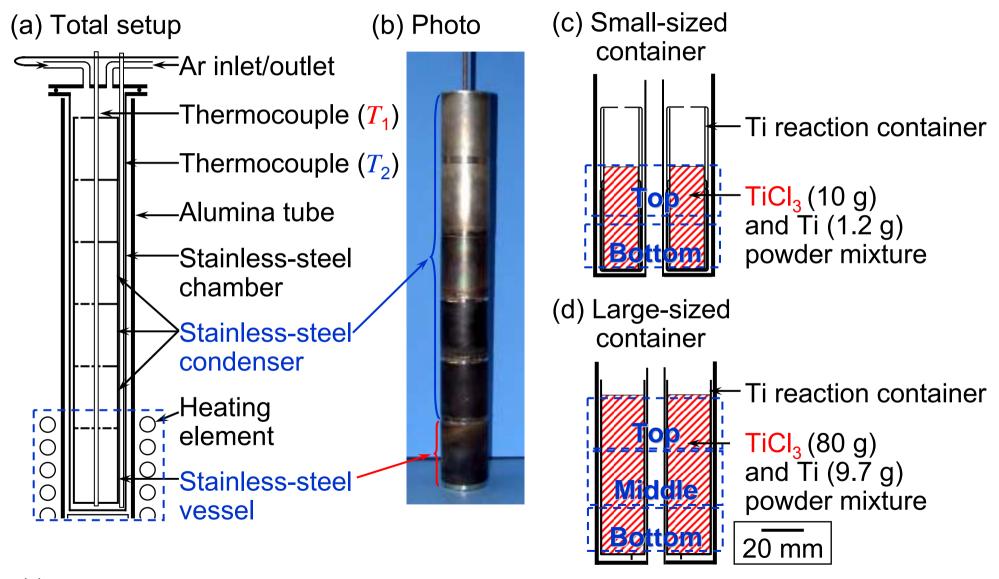

Experimental Apparatus

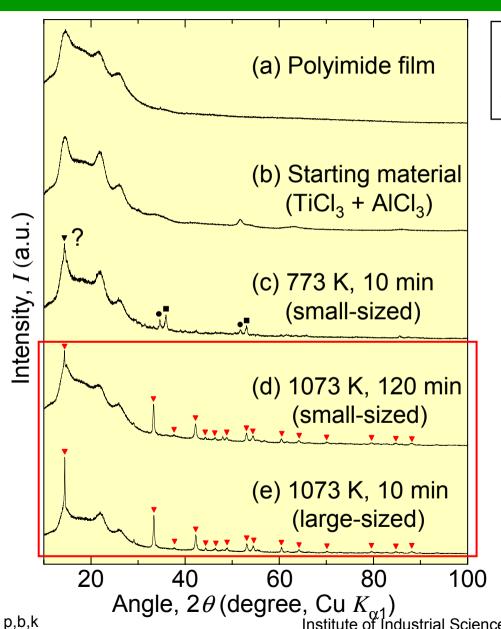

スポンジTiの表面に極わずか $TiCl_2$ が生成していたが、分離・回収はできなかった.

Chapter II


Experimental Apparatus

Chapter V Production Process of Titanium Subchlorides


Chapter V Phase Diagram for the Ti–Mg–Cl system at 1073 K



[Ref. Okabe et al.: J. Japan Inst. Metals 61 (1997) pp. 610-618.]

Chapter V

Experimental Apparatus

•: α-TiCl₃ **■**: *γ*-TiCl₃ ▼: TiCl₂

XRD pattern of the products

TiCl₂ was obtained.

PDF #29-1357, γ-TiCl₃: PDF #29-1359, TiCl₂: PDF #10-0315 and 73-0751.

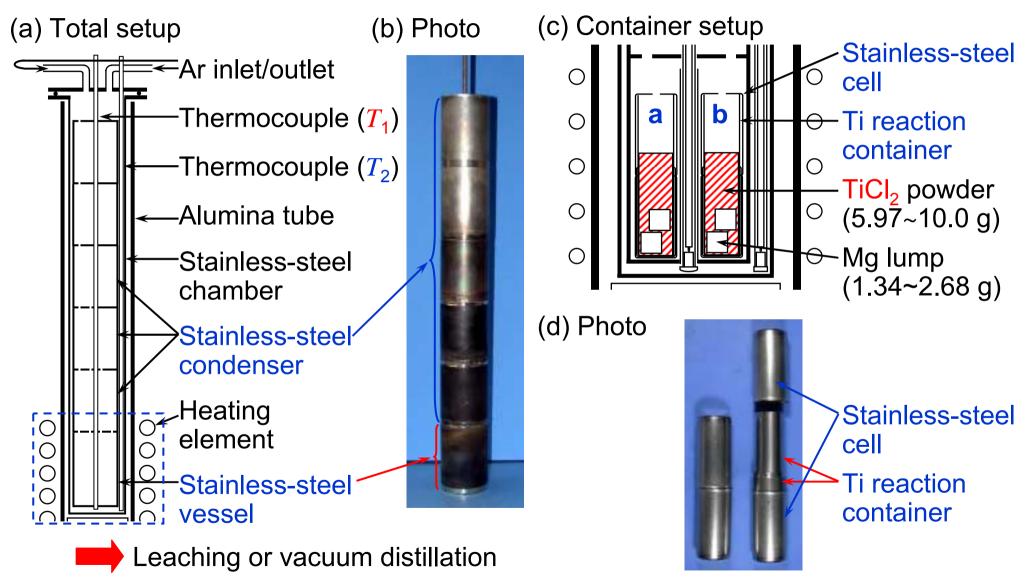
Institute of Industrial Science, The University of Tokyo

March 15, 2006, TMS 2006

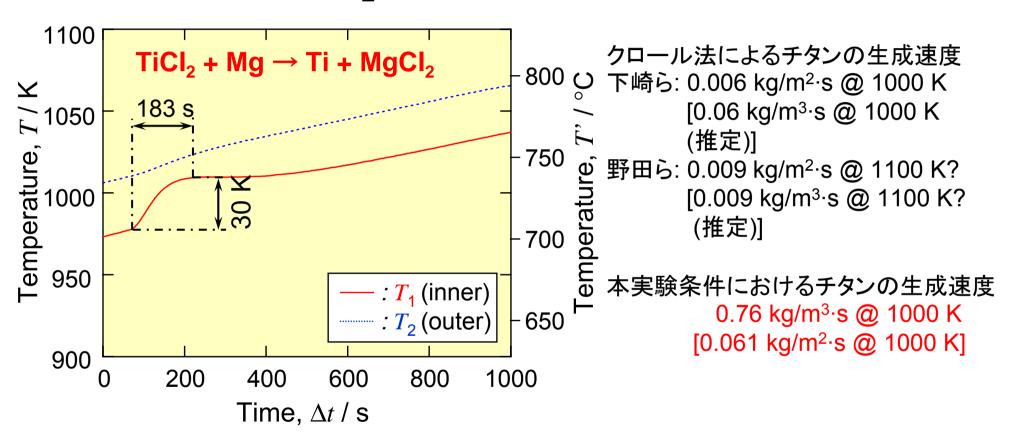
Table Analytical results of the obtained TiCl₂ samples.

Sample	Concent	ation of e	- Yield	Calculated		
	Ti ^c	Fe ^c	Al c	CI d	(%)	value of x in TiCl _x
Feed ^a	24.31 b	0.03	4.50 b	71.12 b	_	2.95
4A _{top}	42.81	0.13	0.05	57.01	5 1	1.80
4A _{bot}	43.18	0.05	0.63	56.14	51	1.76
4B _{top}	37.10	0.06	0.19	62.61		2.28
$4B_{mid}$	39.54	0.05	0.10	60.29	94	2.06
4B _{bot}	40.25	0.07	0.10	59.56		2.00

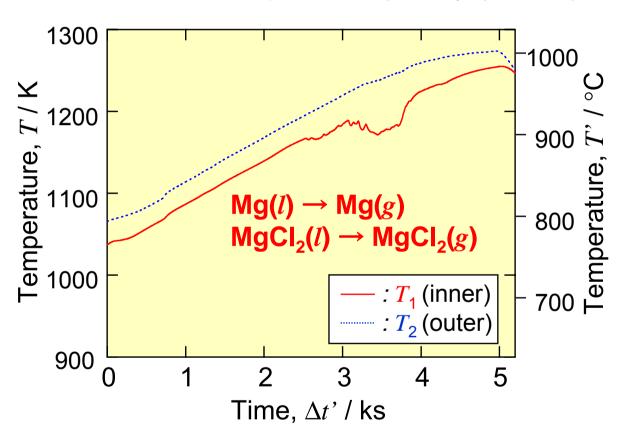
a: Supplied by Toho Titanium Co., Ltd.


b: Nominal value.

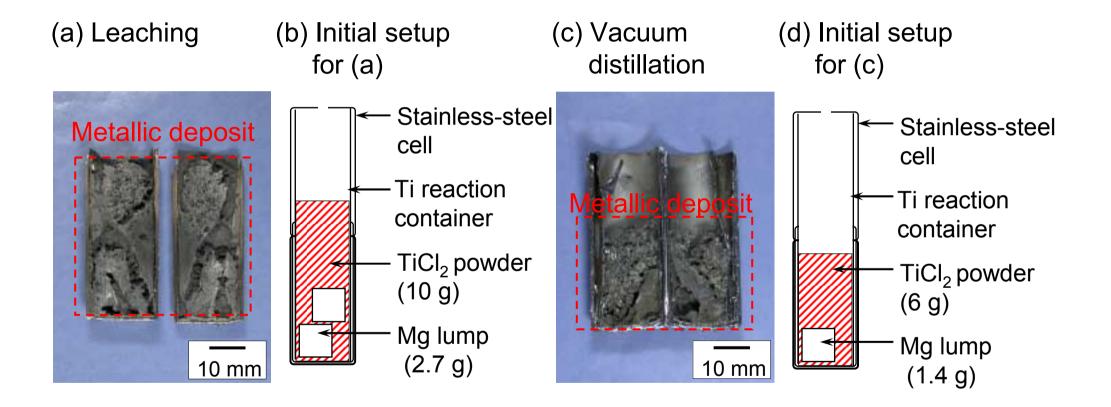
c: Determined by ICP-AES.


d: Determined by potentiometric titration method.

Chapter V


Experimental Apparatus

TiCl₂の還元反応の温度履歴


副生成物の真空蒸留の温度履歴

途中の温度ドロップは副生成物の MgCl₂および余剰の金属マグネシウムの蒸発により熱が奪われたものと 考えられる.

$$(p^{\circ}_{\mathrm{MgCl_2}} = 520 \; \mathrm{Pa} \; (5.1 \times 10^{-3} \; \mathrm{atm}), \ \Delta H^{\circ}_{\mathrm{evap}, \; \mathrm{MgCl_2}} = 188 \; \mathrm{kJ/mol} \; @ \ 1150 \; \mathrm{K})$$

生成物の外観

Ti reaction container was not damaged.

生成物の析出相と組成

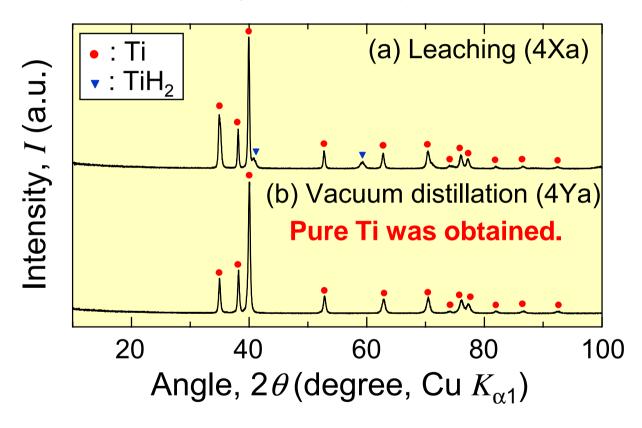
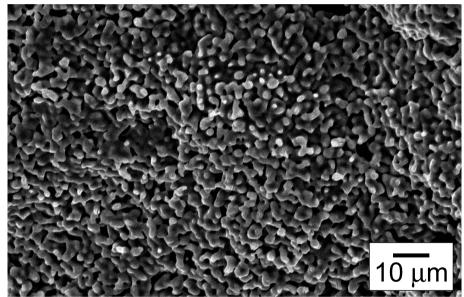
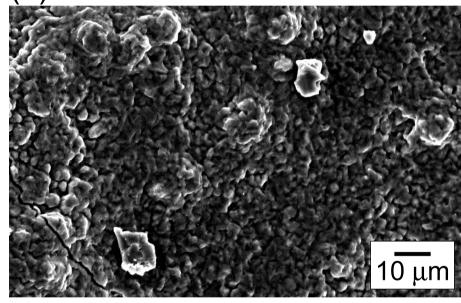


Table Analytical results of the Ti sample recovered by leaching (4X) and vacuum distillation (4Y).

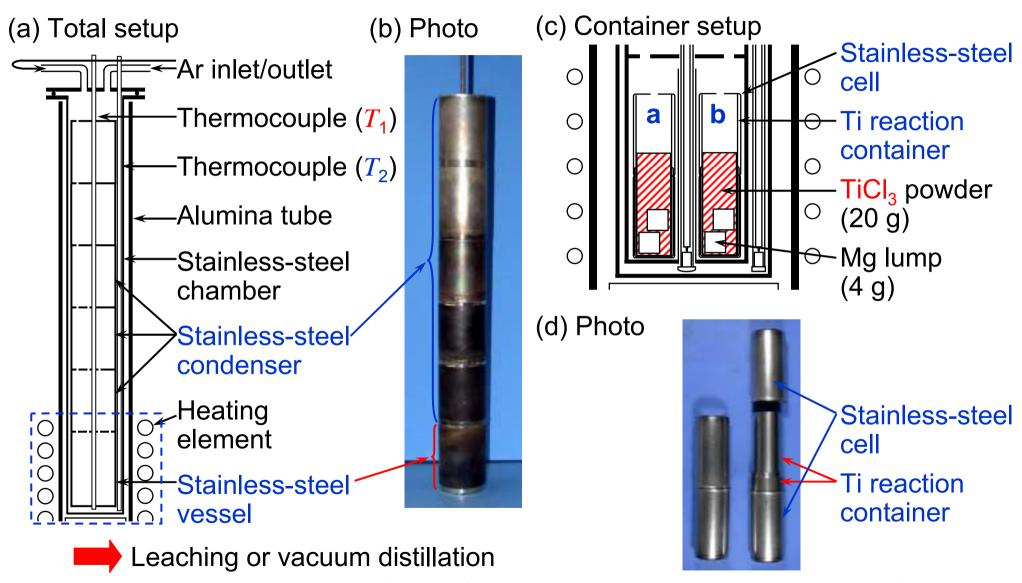

Code		Concentration of element i, C_{i} (mass%) ^a							Yield
	Ti	F	е	Ni	Cr	Mg		Al	(%)
4Xa	99.71	0.1	16	0.04	<0.01	0.06	0.	03	99
4Xb	99.19	0.1	10	<0.01	0.05	0.50	0.	16	>89 ^b
4Ya	99.75	0.2	22	<0.01	0.03	<0.01	<(.01	98
4Yb	99.72	الم	16	<0.01	<0.01	<0.11	0.	10	99

a: Determined by XRF; the value excludes carbon and gaseous elements.

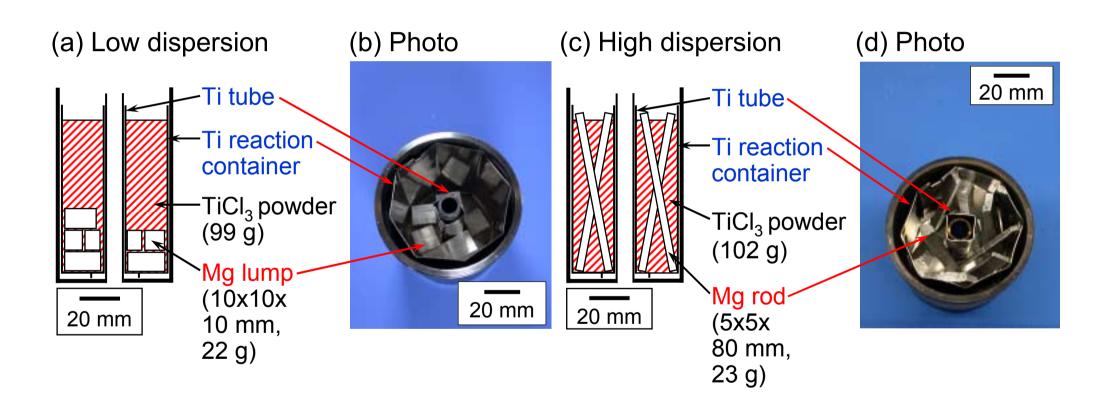
b: This value includes the uncertainty due to mechanical separation.


生成物の微細構造

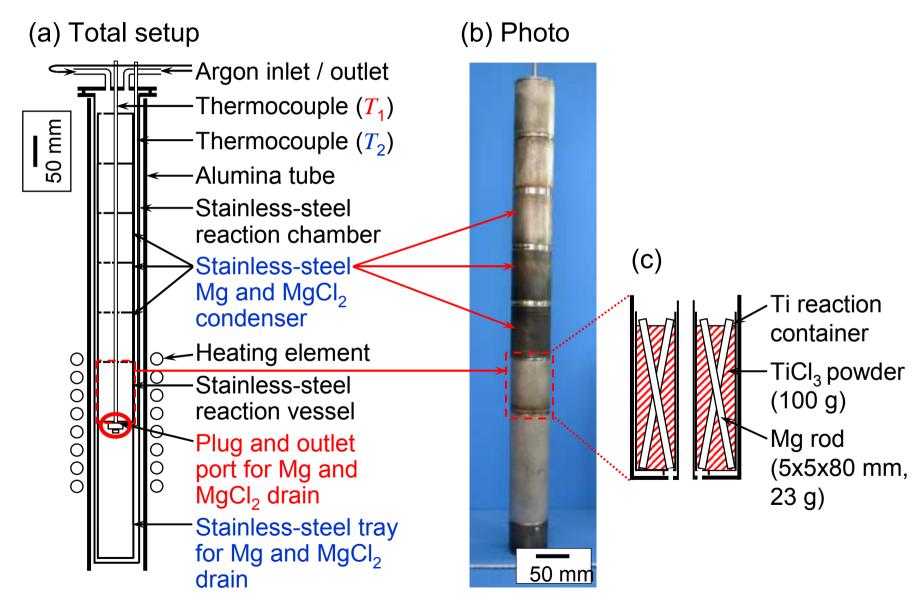
Coral like structure

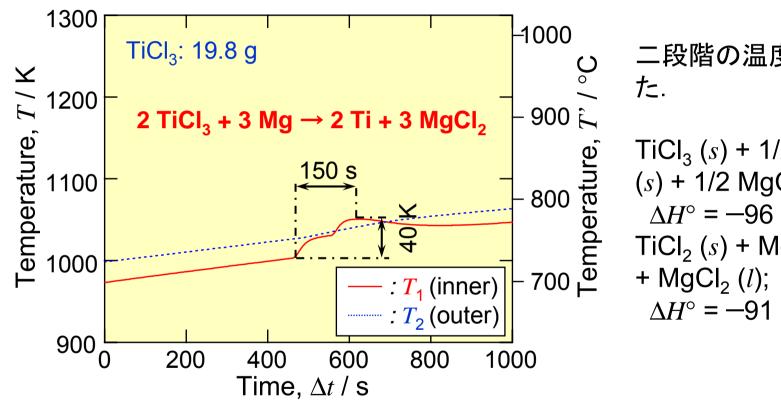

(b) Vacuum distillation

Primary particles were sintered.

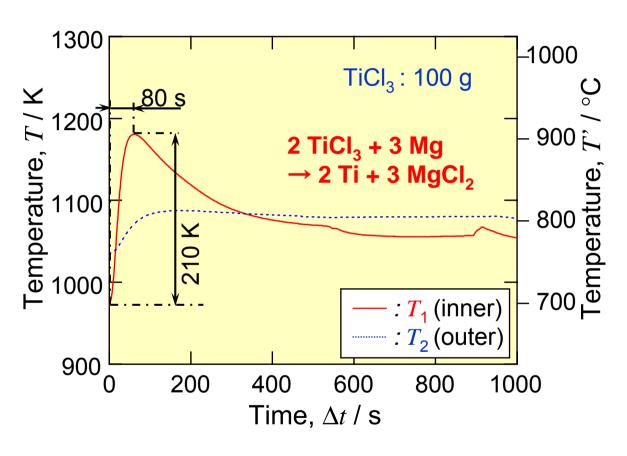

Chapter VI

Experimental Apparatus


Experimental Apparatus


Mgの分散状態を変化させた実験

Chapter VI

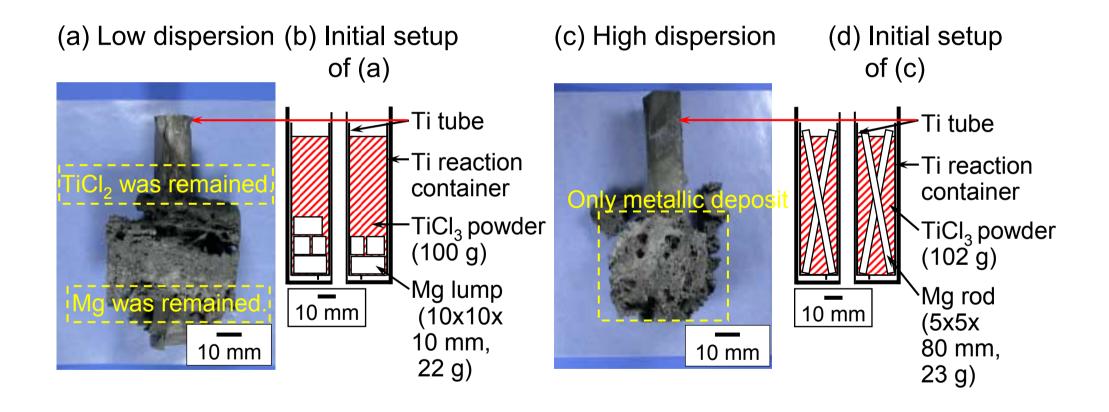

Experimental Apparatus

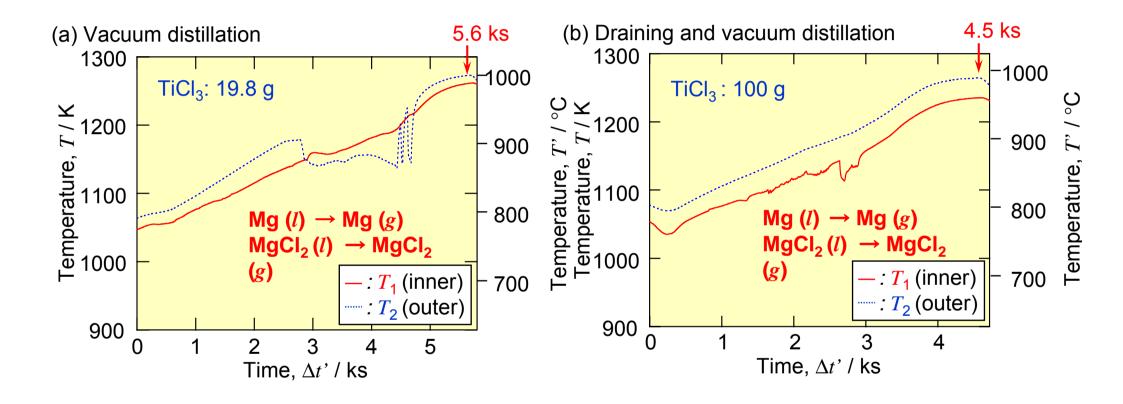
二段階の温度上昇が観測された.

TiCl₃ (s) + 1/2 Mg (l)
$$\rightarrow$$
 TiCl₂
(s) + 1/2 MgCl₂ (l);
 $\Delta H^{\circ} = -96 \text{ kJ/mol} \ \textcircled{mol} \ \textcircled{mol} \ \textcircled{mol} \ \textbf{Mol} \ \textbf{$

TiCl₃の投入量が多い実験では、 一段階の急激な温度上昇が観測 された.

本実験条件におけるチタンの生成速度


0.54 kg/m³·s @ 1000 K [0.043 kg/m²·s @ 1000 K


生成物の外観

Ti reaction container was not damaged.

生成物の外観

生成物の外観

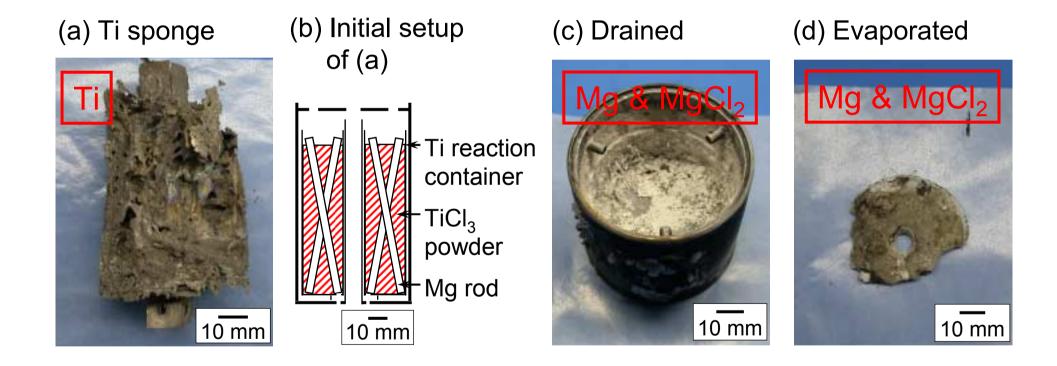
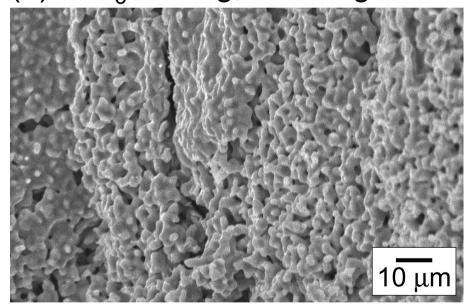


Table Analytical results of the Ti sample.

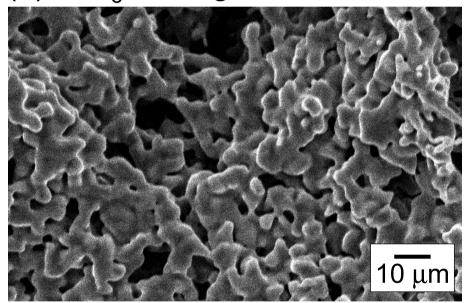
Exp.	Concentration of element i, $C_{\rm i}$ (mass%) ^a						
	Ti	Fe	Ni	Cr	Mg	Al	(%)
5A ^c	96.35	0.13	<0.01	0.03	0.02	3.47	81
5B ^d	99.37	0.16	<0.01	0.02	<0.01	0.44	99
5C b,d	95.79	1.74	0.33	0.36	<0.01	1.77	80
5D ^c	99.26	0.29	<0.01	<0.01	0.10	0.36	66
5E ^c	99.52	0.12	<0.01	<0.01	0.11	0.24	91
5X ^e	99.04	0.18	0.02	0.02	0.09	0.65	82
5Y e	99.18	0.50	<0.01	<0.01	0.09	0.21	87
)					

a: Determined by XRF, and the value excludes carbon and gaseous elements.

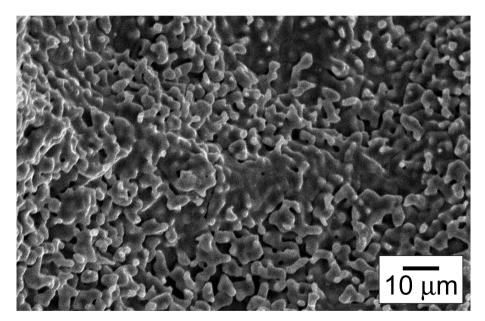

b: Stainless-steel reaction container was used.

c: Recovered by leaching.

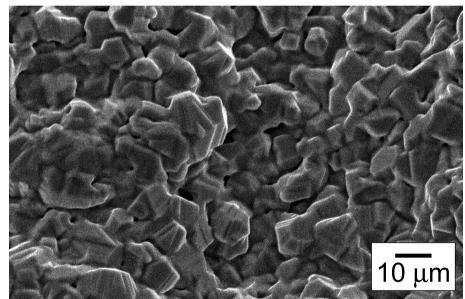
d: Recovered by vacuum distillation.


e: Recovered by draining and vacuum distillation.

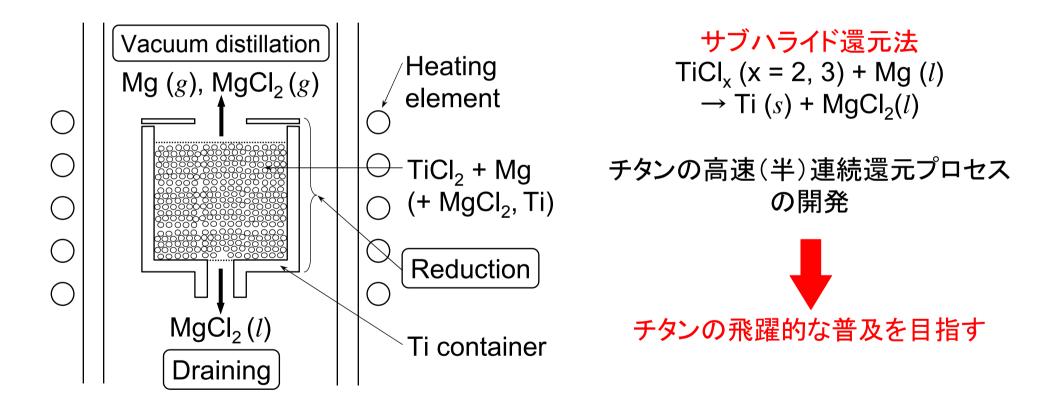
(a) TiCl₃: 19.7 g, leaching


Coral like structure

(b) TiCl₃: 19.8 g, vacuum distillation


Primary particles were sintered.

(a) TiCl₃: 102 g, leaching


Coral like structure

(b) TiCl₃: 100 g, draining and vacuum distillation

Primary particles were sintered.

Conclusions

Epilogue

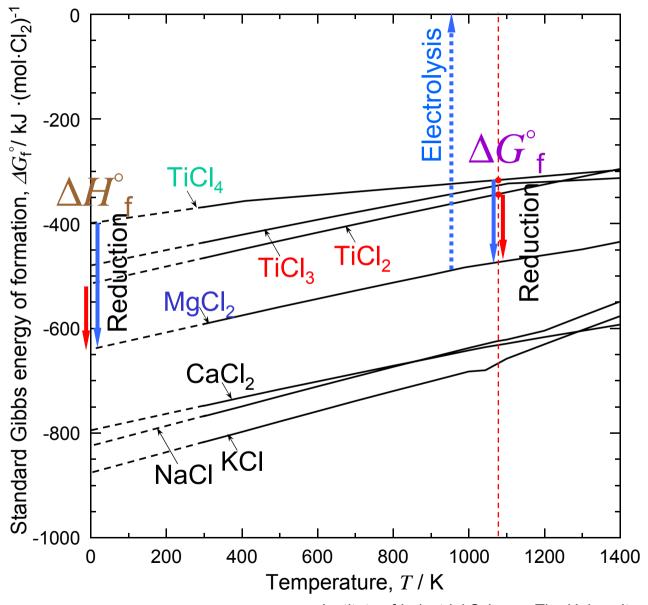


Fig. The table centerpiece made of aluminum, which was crafted for Emperor Napoleon III in 1858. (Carnegie Museum of Art, Pittsburgh, Pennsylvania, cover page of JOM, Nov. 2000)

Aluminum was changed from a rare metal to a common metal by the process innovation, and it contributed to develop our society.

Can titanium be a common metal?

Chapter I Gibbs Energy of Formation of Chloride

$$\Delta G_{\rm f}^{\circ} = \Delta H_{\rm f}^{\circ} - T \Delta S_{\rm f}^{\circ}$$

Heat of reduction is halved by utilizing titanium subhalides

Fig. Standard Gibbs energy of formation of several Chlorides.[Ref. I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim, (1989).]

Chapter I Mass Balance of Titanium Production

```
TiCl_4 + 2 Mg \rightarrow Ti + 2 MgCl_2
3.96 ton 1.02 ton 1 ton
                                             3.98 ton
2.33 m<sup>3</sup> 0.59 m<sup>3</sup> 0.22 m<sup>3</sup> (1.71 m<sup>3</sup>)
\Delta H^{\circ} = -8980 \text{ MJ } (2.50 \text{ MW} \cdot \text{h})
                Mg
TiCl<sub>2</sub>
                           \rightarrow Ti + MgCl<sub>2</sub>
2.48 ton 0.51 ton 1 ton
                                              1.99 ton
0.79 \text{ m}^3 0.29 \text{ m}^3 0.22 \text{ m}^3 0.85 \text{ m}^3
\Delta H' = -1900 \text{ MJ } (0.53 \text{ MW-h})
```

Vapor Pressure

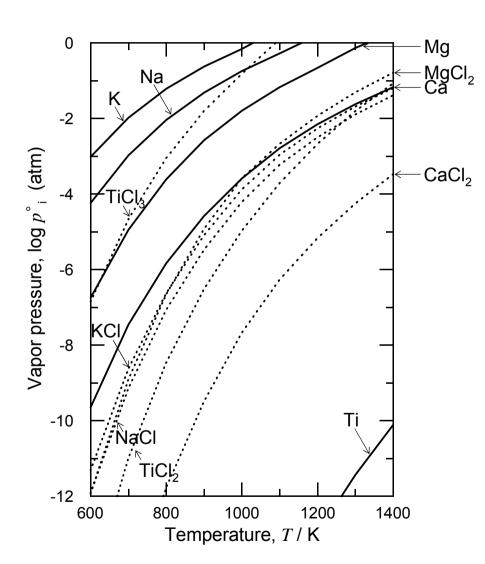


Fig. Vapor pressure of several chemical species. [Ref. I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim, (1989).]

Vapor Pressure

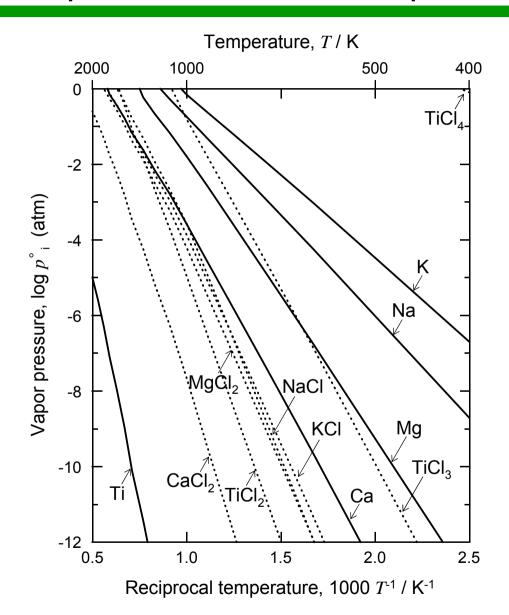
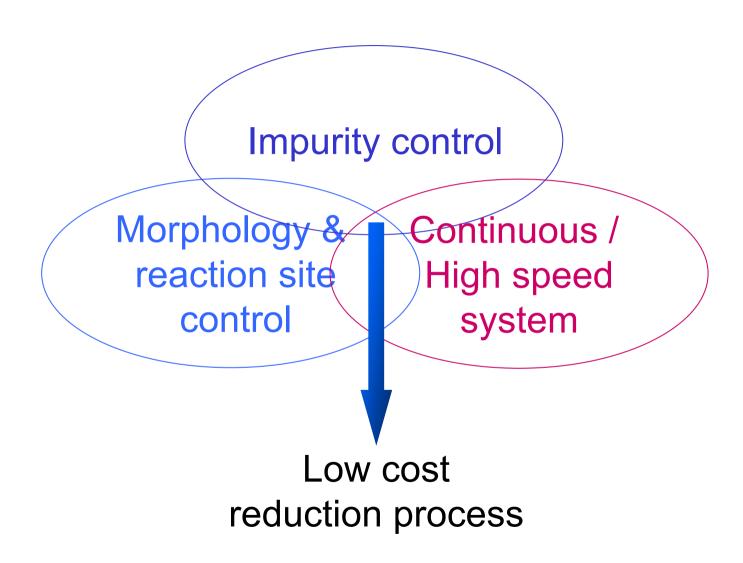
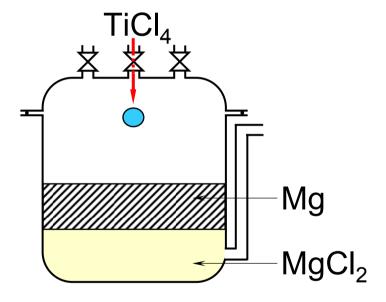
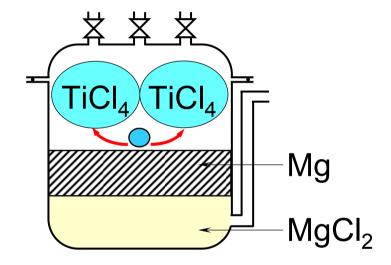



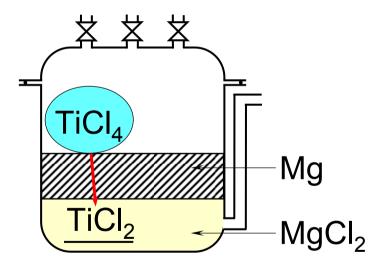
Fig. Vapor pressure of several chemical species. [Ref. I. Barin, Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim, (1989).]


Chapter I Key Factors of the Development of a New Titanium Reduction Process

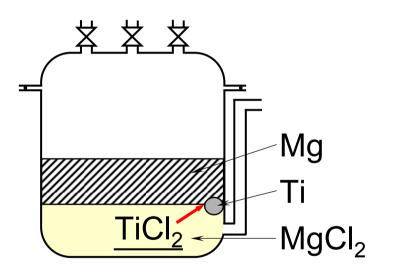
Vapor Pressure


	Advantages	Disadvantages
Kroll	High purity titanium available Easy metal / salt separation Established chlorine circulation Utilizes efficient Mg electrolysis Reduction and electrolysis operation can be carried out independently	× Complicated process × Slow production speed × Batch type process
FFC	Simple process Semi-continuous process	 Difficult metal / salt separation Reduction and electrolysis have to be carried outsimultaneously Sensitive to carbon and iron contamination Low current efficiency
OS	Simple process Semi-continuous process	 Difficult metal / salt separation Sensitive to carbon and iron contamination Low current efficiency
EMR / MSE	Resistant to iron and carbon contamination Semi-continuous process Reduction and electrolysis operation can be carried out independently	 Difficult metal / salt separation when oxide system Complicated cell structure Complicated process
PRP	Effective control of purity and morphology Flexible scalability Resistant to contamination Small amount of fluxes necessary	Difficult recovery of reductantEnvironmental burden by leaching
This study	High speed reduction process Semi-continuous process Titanium scrap enable Facilities for Kroll process can be utilized	× Difficulty of TiCl₂ handling Multiple reduction process

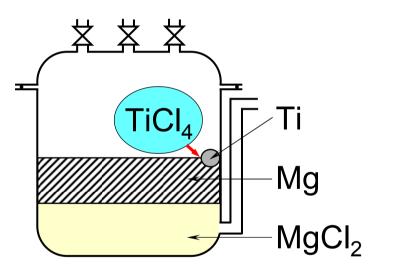
1. TiCl₄ is dropped into a reactor.


2. TiCl₄ vaporizes.

$$TiCl_4(I) \rightarrow TiCl_4(g)$$


3. A part of gaseous TiCl₄ is reduced to TiCl₂ by Mg, and TiCl₂ dissolves into molten MgCl₂.

$$TiCl_4(g) + Mg(I) \rightarrow TiCl_2(I) + MgCl_2(I)$$


4. TiCl₂ is reduced to Ti by Mg.

$$TiCl_2(I) + \underline{Mg(I)} \rightarrow Ti(s) + MgCl_2(I)$$

5. A part of gaseous TiCl₄ is directly reduced to Ti by Mg.

$$TiCl_4(g) + 2 Mg(I) \rightarrow Ti(s) + 2 MgCl_2(I)$$

Table	Physical	properties	of chemica	al species	used in this s	study.
-------	----------	------------	------------	------------	----------------	--------

Symbol of chemical	Name of chemical	Molecular	Density at 20 °C, _	Melting point,		Boiling point,		Sublimation point	
species	species	weight	$d_{2\tilde{0}}$ / g· cm ⁻³	<i>T</i> _m ' / °C	T _m / K	<i>T</i> _b ' / °C	T _b / K	<i>T</i> _s ' / °C	T _s / K
Ti	Titanium	47.88 ^a	4.5 ^a	1680 ^a	1953 ^a	3262 ^a	3535 ^a	a	_a
				1660 ^d	1933 ^d	3300 ^d	3573 ^d	d	d
TiCl ₂	Titanium (II)	118.77 ^b	3.13 ^c	1035 ^c	1308 ^c	1500 ^c	1773 ^c	_c	_c
	chloride			e	e	e	e	1307 ^e	1580 ^e
TiCl ₃	Titanium (III) chloride	154.22 ^b	no data	e	e	e	e	830 ^e	1103 ^e
T: OI	Titanium (VI)	189.67 ^b	1.702 ^c	-24.1 ^c	249.1 ^c	136.5 ^c	409.7 ^c	c	c
TiCl ₄	chloride			-24.1 ^e	249.1 ^e	134.9 ^e	408 ^e	e	e
Mg	Magnesium	24.31 ^a	1.74 ^a	659 ^a	932 ^a	1103 ^a	1376 ^a	a	a
				649 ^d	922 ^d	1090 ^d	1363 ^d	d	d
MgCl ₂	Magnesium	95.21 ^b	2.325 ^c	714 ^c	987 ^c	1412 ^c	1685 ^c	c	c
	(II) chloride			714 ^d	987 ^d	1410 ^d	1683 ^d	d	d
Cl ₂	Chlorine	hlorine 70.90 b	3.21 x 10 ^{-3 d}	-101 ^c	172 ^c	-34.6 ^c	238.6 ^c	_c	c
				-101 ^d	172 ^d	-34.1 ^d	239.1 ^d	d	d

a: Kinzoku Data Book, 3rd ed., (ed. by Japan Inst. Metals, Maruzen, Tokyo, 1993) pp. 1-11.

b: Calculated from reference a.

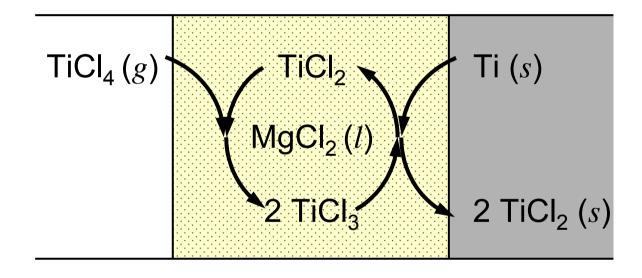
c: M. Nakahara: Dictionary of Inorganic Compounds & Complexes, (Koudansya, Tokyo, 1997) p 87.

d: R. Kubo et al.: Rikagaku Jiten, 4th ed., (Iwanami Shyoten, Tokyo, 1992) pp 159-784.

e: I. Barin: Thermochemical Data of Pure Substances, (VCH Verlagsgesellschaft, Weinheim, 1989)

	Table Temperature at specific vapor pressure				
	Temperature pressure 0.0	-	Temperature at vapor pressure 0.1 atm		
	T' _{p0.01} / °C	$T_{\rm p0.01}$ / K	T' _{p0.1} / °C	T' _{p0.1} / K	
TiCl ₂	1010	1283	1133	1407	
TiCl ₃	613	887	707	980	
Mg	701	975	859	1133	
MgCl ₂	922	1195	1085	1358	

Table
Composition of titanium tri-chloride a used in this study


Element i	Composition of element i			
	x'; (mass%)	<i>x</i> _i (mol%)		
Ti	24.3	18.9		
CI	71.1	74.8		
Al	4.5	6.3		
TiCl _{2.96}	77.6 ^b	75.1 ^b		
AICI ₃	22.4 b	24.9 b		

a: Supplied by Toho titanium Co., Ltd.

This chemical is produced as a catalyst for polymerization of polypropylene.

b: Calculated value.

TiCl_x生成反応のメカニズム

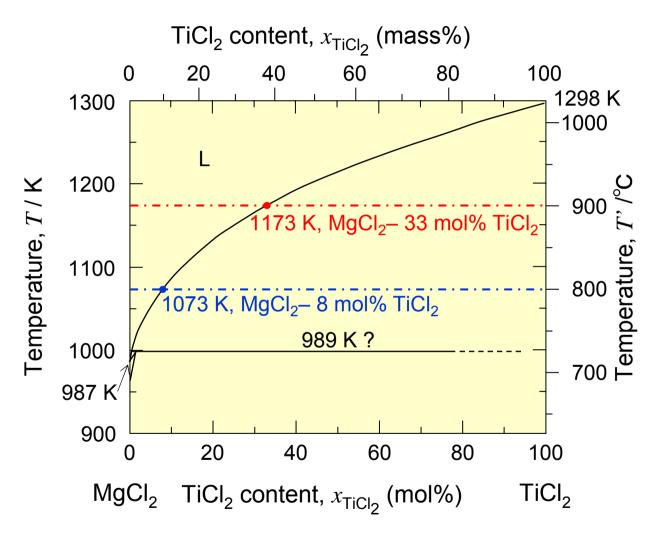
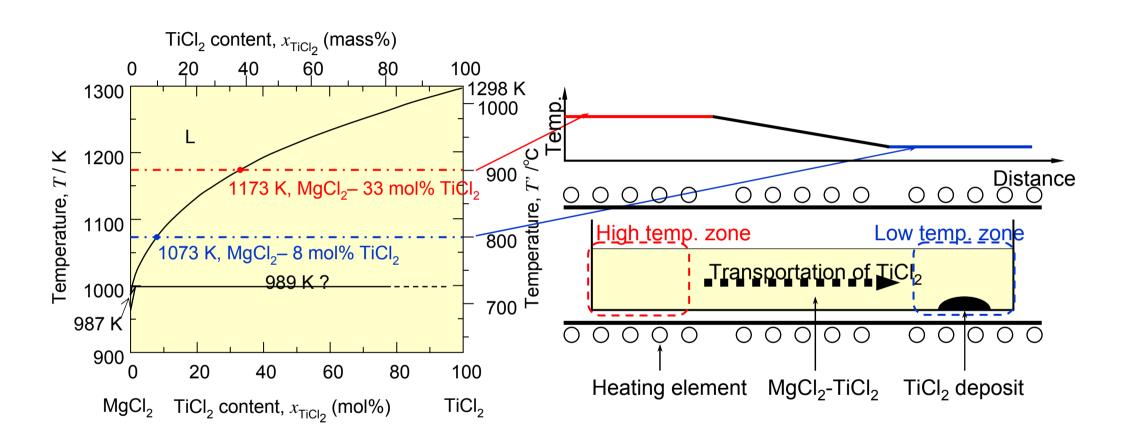
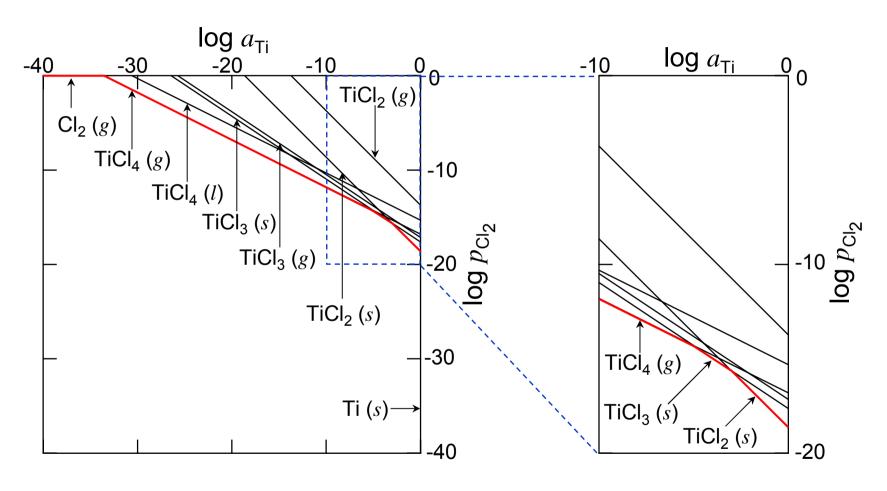
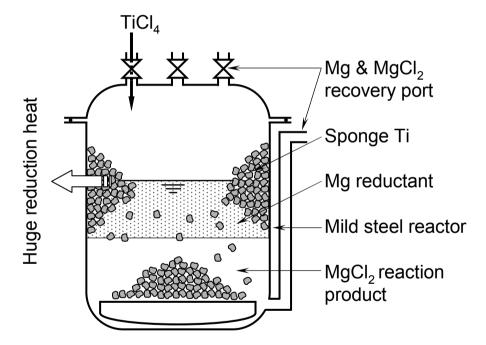



Fig. Phase diagram for the MgCl₂-TiCl₂ system.

[Ref. K. Komarek and P. Herasymenko:


J. Electrochem. Soc. 105 (1958) p 210.]

Enrichment of TiCl_x


Potential diagram for Ti-Cl binary system

T = 1000 K

(a) Reduction of TiCl₄ by Mg

$$TiCl_4(l, g) + 2Mg(l) \rightarrow Ti(s) + 2MgCl_2(l)$$

(b) Vacuum distillation of reaction product MgCl₂ and excess Mg

$$Mg(l) \rightarrow Mg(g), MgCl_2(l) \rightarrow MgCl_2(g)$$

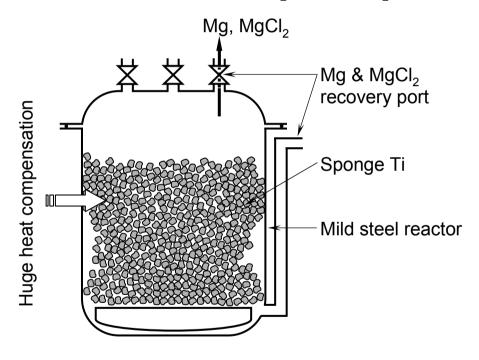
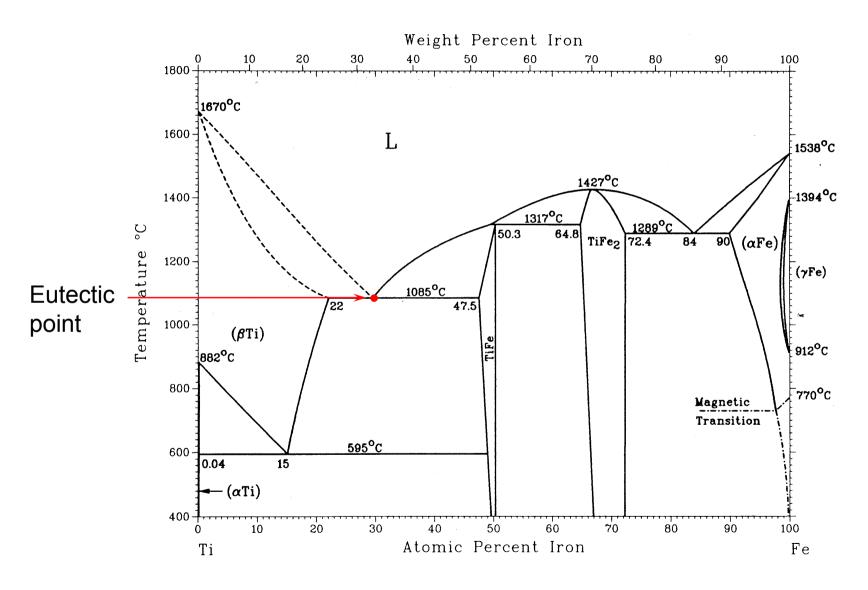



Fig. 1-3 Schematic illustration of (a) the reduction process, and (b) vacuum distillation process for titanium production based on the Kroll process.

Phase diagram for Ti-Fe binary system

