Niobium Powder Production in Molten Salt by Electrochemical Pulverization

Boyan Yuan^{*} and Toru H. Okabe^{**}

*: Graduate Student, Department of Materials Engineering, University of Tokyo

> **: Associate Professor, Institute of Industrial Science, University of Tokyo

Niobium and Tantalum

Table Comparison of Nb with Ta

.	Nb		Та			
Atomic number	VB 41		VB 73			
Crystal structure	bcc		bcc			
Melting point	2468 [°] C		2980 °C			
Density	8.56 g/cm ³		16.65	g/cm ³		
Dielectric constant of pentoxide	<mark>41</mark>		27			
Reserves	4,400,00	0 ton Nb	43,000	ton Ta		
Annual world productivity	23,000	ton Nb	2,300	ton Ta		
Price	<mark>~ 50 \$/k</mark>	(g	~ 700	<mark>\$/kg</mark>		
M ajor applications	Microalloy element for steel		Solid electrolytic capacitor			
C ommercial production process	Aluminothermic sreduction (ATR)		Sodiothermic reduction (Hunter)			
Product form	Nb/FeNb bar		Ta powder			
D evelopment	Next generation capacitors		Higher performance capacitor			
Nb, a potential substitute of Ta 2						

for next generation capacitors

Hunter process

 $K_2TaF_7(l) + 5 Na(l) \rightarrow Ta(s) + 5 NaF(l) + 2 KF(l)$ Diluent

Figure Schematic illustration of the Hunter process.

Features

- Ø Well controlled powder purity and morphology
- × Batch type process
- Time and labor consuming reduction process followed by mechanical and hydrometallurgical separation operations
- × Large amount of **fluorides** wastes

Direct reduction processes of oxide

Mg (or Mg alloy) chips

4

To develop a **new**, **low cost**, **high quality** niobium powder production process for capacitor or other electronic applications.

Essential process features:

- fine and homogeneous niobium powder have to be obtained.
- O purity and morphology of the niobium powder have to be controlled.
- O the process is required to be **low cost** and efficient,
- (semi-) continuous,
- O environmentally sound.

Electrochemical Pulverization (EP)

Figure Schematic illustration of the configuration of EP.

Features:

Fine powder production by

homogeneous ionic redox reaction.

O Purity and morphology can be controlled by:

dissolution speed of Nb bulk, concentration of Dy²⁺ ions reductant, temperature.

O Low cost:

cheap ATR Nb ingot feed can be used.

O Environmentally sound:

reductant is not consumed,

molten salt can be reused.

Thermodynamic analysis

Figure (a) Three dimensional chemical potential diagram for the Nb-Dy-CI system at 1000 K. (b) A mechanism for niobium powder production using Dy³⁺ /Dy²⁺ equilibrium in molten salt.

Nb ions reduction using Dy³⁺/Dy²⁺ equilibrium is thermodynamically feasible ⁷

Experimental procedure

(a) Flowchart of Experimental procedure

(b) Experimental conditions for EP of ATR-Nb

Exp	. Dy add	J.	Molten salt	Temp.Current		
#	w_{Dy}/g	w _{ms} /g	Composition (mol%)	<i>T</i> /K	i/A	
A	30.5	1296	NaCl-36KCl-9MgCl ₂ -1DyCl ₂	1000	2	
В	50.1	1049	NaCl-36KCl-8MgCl ₂ -2DyCl ₂	1000	28	

Cyclic voltammogram of Nb

(a) Experimental setup

(a) Cyclic voltammogram of Nb in NaCl-36 mol%KCl-10 mol%MgCl₂ molten salt

CV before and after Dy²⁺ addition

EP of Nb in Dy²⁺ containing molten salt

(b) Chronopotentiomatric curve of Nb anode (i = 2 A)

Appearances before and after EP

Nb rod was dissolved

(b) Stainless steel holder of liquid alloy cathode after EP

Cathode current lead

Supporting rod for cathode

Stainless steel holder

No Nb deposition on cathode was observed

(c) Nb deposits in powder collecting dish after EP

Supporting rod for collecting dish

Nb powder with salt

Collecting dish

Nb powder was obtained in collecting dîsh

XRD and XRF analysis

(a) XRD pattern of the Nb powder obtained by EP.

(b) XRF results of the Nb powder obtained by EP.

Ex	ρ.	Concentration of element <i>i</i> , C_i (mass%)					Yield		
#	Nb	Fe	Cr	Ni	Ag	Mg	W	Та	
А	97.92	0.12	0.01	0.14	<0.01	0.06	0.70	0.05	92%
В	92.68	2.93	0.90	0.23	<0.01	0.44	1.04	<0.01	98%

Presently, niobium powder with purity of 98 mass% was obtained.

SEM and particle size analysis

(a) Exp. A: in NaCl-36 mol%KCl-9 mol% MgCl₂-1 mol% DyCl₂

(b) Exp. B: in NaCl-36 mol%KCl-8 mol% MgCl₂-2 mol% DyCl₂

Figure SEM image and particle size distribution profile of the Nb powder obtained by EP technique.

Fine and homogeneous Nb powder 14 was obtained

Summary and future work

Summary:

The electrochemical pulverization technique of bulk niobium in molten NaCl-KCl-MgCl₂ salt containing Dy²⁺ ions was demonstrated to be **effective in producing fine and homogeneous** niobium powder.

Future work:

- Development of powder purity and morphology controlling techniques.
- Improvement of **current efficiency**.

Development of the electrochemical pulverization technique to be applied to the production technology of niobium powder for **next generation high performance capacitors.**