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Abstract

A new titanium production process using the magnesiothermic

reduction of titanium subhalides employing a titanium reaction 

vessel was investigated. This study discusses the possibility of 

establishing a high-speed, semi-continuous process for the 

production of high-purity titanium. The titanium subhalide feed 

material, either titanium dichloride (TiCl2) or titanium 

trichloride (TiCl3), and the magnesium reductant were charged 

into a titanium reaction vessel, and the reaction vessel was 

heated in an argon gas atmosphere. The sample temperature rose 

monotonically to 973 K, after which it increased rapidly, 

implying that the magnesiothermic reduction of titanium 

subhalide proceeded at a high speed. After the reaction, excess 

magnesium and the reaction product, magnesium chloride 

(MgCl2), were removed by leaching or draining and vacuum 

distillation. At this stage, titanium sponge with 99.8% purity 

was successfully obtained. The titanium reactor did not appear 

to be damaged and thus proved its suitability for the 

magnesiothermic reduction of titanium subhalides. 

Introduction 

Titanium is a promising material because of its excellent 

properties such as low density, high strength, corrosion 

resistance, and abundance. It is applied to the aerospace industry, 

chemical processing, marine applications, eyeglass frames, etc. 

Figure 1 (a) and (b) show the worldwide market share of 

titanium sponge production in 2003 and the transition of 

production volume of titanium mill products in Japan, 

respectively [1,2]. As depicted in this figure, titanium 

production is growing steadily; however, its total production 

volume globally is significantly smaller than that of common 

metals such as iron and aluminum. The principal reason for this 

is that the current titanium production process (the Kroll 

process) [3] is a batch-type process and the reduction process is 

lengthy. Due to these factors, the production cost of titanium 

metal is high. The production speed of titanium is lower than 1 

t/day·batch despite using a 10 t batch reactor, which is currently 

the largest scale of operation. This productivity is extremely low 

compared to that of the other common metals. The demand for 

titanium is expected to increase in the future; however, the 

expansion of the production scale is limited so long as titanium 

is produced by the current production process. 

Figure 2 is a schematic illustration of the titanium production 

process based on the Kroll process. In the Kroll process, either 

titanium feed ore (Rutile ore), which principally consists of 

titanium dioxide (TiO2), or upgraded ore (UGI), which is an 

upgraded ilmenite ore (FeTiO3), is converted to titanium 

tetrachloride (TiCl4) by the reaction with chlorine (Cl2) gas 

under a carbon-saturated atmosphere. The obtained TiCl4 is 

purified by distillation, and iron and oxygen free feed is 

produced. The TiCl4 feed material is dropped into a mild steel 

reactor in which molten magnesium (Mg) is charged. The feed 

material is then reduced by the magnesium at approximately 

1100 K in an argon gas atmosphere. After the reaction, the 

by-product MgCl2 and the excess magnesium are removed from 

the reactor both by tapping and by vacuum distillation. The 

recovered MgCl2 is converted into magnesium reductant and 

chlorine gas by molten salt electrolysis, and the products are fed 

back to the reduction and chlorination process. 

16

14

12

10

8

6

4

2

0
2000199019801970

(a)   Production of titanium sponge in the world (2003)

(b)   Production of titanium mill products in Japan
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Figure_1.___(a) Production of titanium sponge in the world, 

(b) production of titanium mill products in Japan [1,2]. 
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Figure_2.___Schematic illustration of the reduction process for 

titanium production in the Kroll process. 
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Table_I.___Features of various reduction processes 

Process Advantages Disadvantages 

Kroll process High-purity titanium obtainable 

Easy metal/salt separation 

Established chlorine circulation 

Utilizes efficient Mg electrolysis 

Reduction and electrolysis operation can be 

independently carried out  

Complicated process 

Slow production speed 

Batch-type process 

FFC process Simple process 

Semi-continuous process 

Difficult metal/salt separation 

Reduction and electrolysis have to be  

simultaneously carried out 

Sensitive to carbon and iron contamination 

Low current efficiency 

OS process Simple process 

Semi-continuous process 

Difficult metal/salt separation 

Sensitive to carbon and iron contamination 

Low current efficiency 

EMR/MSE process Resistant to iron and carbon contamination 

Semi-continuous process 

Reduction and electrolysis operation can be 

independently carried out 

Difficult metal/salt separation when oxide  

system is used 

Complicated cell structure 

Complicated process 

PRP Effective control of purity and morphology 

Flexible scalability 

Resistant to contamination 

Small amount of fluxes required 

Difficult recovery of reductant 

Environmental burden caused by leaching 

This study High-speed reduction process 

Semi-continuous process 

Effectively uses titanium scraps 

Facilities of the Kroll process can be utilized 

Difficulty in TiCl2 handling 

Multiple reduction process 

The obtained sponge titanium deposit is then mechanically 

crushed into small pieces, and melted and cast into an ingot. The 

Kroll process has several beneficial features, e.g., the 

magnesium and chlorine cycles are established and high-purity 

titanium is obtained. 

However, as mentioned previously, the reduction process is a 

batch-type process and its production speed is extremely low. 

The low productivity of the reduction process is one of the 

major factors leading to the increase in the cost of titanium 

production, thereby preventing the expansion of titanium 

application in the market. 

A new process termed as the FFC Cambridge process [4], 

recently developed by Fray et al., has stimulated titanium 

research activity. As a result, several processes that enable 

titanium production directly from titanium oxide, such as the OS 

process developed by Ono and Suzuki [5], the EMR/MSE 

process [6], and the preform reduction process (PRP) developed 

by Okabe et al. [7], are currently being actively investigated in 

Japan. The features of these processes are summarized in Table I. 

In the FFC process, the sintered TiO2 electrode is immersed in 

molten calcium chloride (CaCl2) salt and is polarized 

cathodically to remove the oxygen from the feed electrode. 

Metallic titanium is directly obtained through this 

electrochemical process. In the OS process, reductant calcium is 

produced by the electrolysis of molten CaCl2 salt. Further, TiO2

powder is supplied to the molten CaCl2 salt, and TiO2 is reduced 

by calcium. The EMR/MSE process utilizes an electronically 

mediated reaction (EMR) in the metallothermic reduction to 

effectively prevent impurity contamination. The overall reaction 

of the FFC, OS, and EMR/MSE processes are identical and they 

use large amounts of molten salts. However, these processes 

possess several advantages as well as drawbacks (See Table I). 

The PRP differs from the abovementioned processes. In this 

process, the fabricated feed preform containing TiO2 is reduced 

by calcium metal vapor. This process is essentially resistant to 

contamination and has flexible scalability since it is based on the 

metallothermic reduction using metal vapor. In these processes, 
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the titanium production process can be simplified by utilizing 

the oxide feed, and a semi-continuous process can be designed. 

However, these direct reduction processes of titanium oxide 

have several problems: purity control of the titanium deposit is 

difficult, production speed is not high, and vacuum distillation 

cannot be utilized for the removal of CaCl2 from the titanium 

product because the vapor pressure of CaCl2 is low (See Figure 

3 for reference [8]). As a result, the leaching process using an 

acid solution has to be employed, but this leads to difficulties in 

the metal/salt separation and in the establishment of calcium and 

chlorine recycling. The direct reduction process of TiO2 is 

simple but it is essential to establish an efficient process for the 

production of high-purity TiO2 from ore by the removal of 

impurities such as iron, aluminum, and silicon. At this stage, 

several technical problems have to be solved before a large-scale 

commercial process for the production of high-purity titanium 

directly from TiO2 can be established. 

The Kroll process is unsuitable for the development of a 

continuous reduction process; further, this reduction process is 

lengthy. However, the Kroll process has several beneficial 

features as follows: (1) the feed TiCl4, which is produced by 

chlorinating titanium feed ore containing TiO2, is in the liquid 

state at ambient temperature, and it can be purified by 

distillation due to its high vapor pressure. As a result, not only 

oxygen but also metal impurities such as iron and aluminum are 

efficiently removed through the chlorination and distillation 

processes; (2) the magnesium and chlorine cycles are 

established and they are repeatedly recycled; (3) the by-product 

MgCl2 has a high vapor pressure and can be removed by 

evaporation without leaching. Subsequently, high-purity 

titanium is obtained. The titanium production process based on 

chloride metallurgy, as represented by the Kroll process, 

(b) Magnesiothermic reduction of TiClx

(a) Production and enrichment of TiClx

(c) Removal of Mg and MgCl2

TiClx production: TiCl4 + Mg           TiClx + MgCl2
TiCl4 + Ti (scrap) TiClx

TiClx reduction: TiClx + Mg           Ti + MgCl2

Ti

sponge

Mg, MgCl2 (l)

Mg, MgCl2 (g)

TiClx

Ti reactor

Mg

MgCl2–TiClx

TiClx

TiCl4 Mg or Ti scrap

Figure_4.___Schematic representation of the steps involved in 

the new titanium production process: (a) production and 

enrichment of TiClx in MgCl2 bath, (b) magnesiothermic 

reduction of TiClx in titanium reactor, (c) removal of excess Mg 

and by-product MgCl2 by draining and vacuum distillation. 

Table_II.___Comparison of the Kroll process and new process 

 Kroll process This study 

Process type Batch-type, 

limited speed 

(Semi-)continuous, 

high speed 

Feed material TiCl4 (l, g) TiCl2 or TiCl3 (s, l)

Heat of 

reduction, 

H /kJ mol Ti) 

High 

( 434) 

Low

( 94~ 191) 

Reactor 

material 

Mild steel 

(Iron

contamination 

unavoidable) 

Titanium

(No iron 

contamination) 

Reactor size Large 

(Crush and melt) 

Small (No crush 

and direct melt) 

Flux, sealant Not used MgCl2, Ti 

Common 

features 

Magnesiothermic reduction of chloride 

Removal of MgCl2 and Mg from Ti sponge 

by draining and vacuum distillation 

High-purity Ti with low oxygen content can 

be produced 

essentially has the advantage of producing high-quality titanium, 

because this process is based on an oxygen-free system. 

Therefore, it is reasonable and practical to develop a new 

reduction process that utilizes the advantages of the 

magnesiothermic reduction of chlorides. 

The authors are currently developing a new titanium production 

process that enables the establishment of a continuous and 

high-speed reduction process based on the magnesiothermic 

reduction of titanium chlorides. In the current titanium 

production process, the reduction of TiCl4 is a highly 

exothermic reaction, and the reduction process has to be 

operated slowly so that the reaction temperature can be 

controlled. Further, the reaction vessel requires several days to 

cool down. Considering that titanium subchlorides 

(TiClx,_x_=_2,3) are stable in a condensed phase even at high 

temperatures, the authors are currently studying a new process 

that is not based on the direct reduction of TiCl4. Figure 4 shows 

the flow of the new process. As shown in Figure 4, the TiCl4

feed is converted to titanium subchloride, either titanium 

dichloride (TiCl2) or titanium trichloride (TiCl3), by the reaction 

with magnesium or titanium scraps. The generated subchloride 

is subsequently enriched in molten MgCl2. The mixture of 

MgCl2 and titanium subchloride is then loaded into a titanium 

reactor and the subchloride is reduced by magnesium. A 

titanium reactor cannot be utilized in the Kroll process because 

TiCl4 easily reacts with metallic titanium, and components made 

of titanium are corroded by TiCl4. In the new process, however, 

it is possible to utilize titanium metal as a material for the 

reactor chamber because TiCl2 equilibrates with metallic 

titanium. After the reaction, the by-product MgCl2 and the 

excess magnesium are removed and recovered by draining and 

vacuum distillation. The obtained titanium can be directly 

melted without crushing and can be cast into an ingot because 

the product is, in principle, oxygen and iron free titanium. 

Table II summarizes the comparison between the Kroll process 

and the new process. The Kroll process is a batch-type, slow 

process, whereas the proposed process is a semi-continuous, 

high-speed process. This is because the heat produced by the 
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reduction of subchloride is substantially lower than that 

produced by the reduction of TiCl4, and the heat extraction ratio 

can be dramatically increased since the reduction process can be 

conducted in the condensed phase excluding the gas phase. The 

iron contamination of titanium can be avoided since it is 

possible to use metallic titanium as the reaction container. This 

process is suitable for a small-scale semi-continuous process, 

and the crushing of massive sponge is unnecessary when the 

reactor size is reduced. The obtained titanium can be melted and 

cast into the ingot directly after the vacuum distillation. Both 

processes share common features such as the magnesiothermic 

reduction of chlorides, the removal of MgCl2 and magnesium by 

vacuum distillation, and the production of low oxygen content 

titanium. Furthermore, the new process can utilize the facilities 

of the Kroll process, and it can be constructed as an 

environmentally sound process by effectively using the titanium 

scraps. 

The authors have thus far carried out a fundamental research 

with the aim of establishing the new process, and have 

demonstrated the feasibility of this process that uses the 

magnesiothermic reduction of TiCl3 [9,10]. A part of the results 

of the systematic study for the establishment of the new process, 

including the experiment for TiCl2 synthesis by reaction of TiCl3

with metallic titanium and the experiment for magnesiothermic 

reduction of TiCl2, is briefly described below. 

Experimental 

The phase diagram for the Ti–Mg–Cl system at 1073 K is 

shown in Figure 5 [11]. As shown in this figure, there are 

several reaction pathways for obtaining metallic titanium from 

TiCl4 using subchlorides. We have conducted two types of 

experiments for titanium production by magnesiothermic 

reduction: Route A using TiCl3 and Route B using TiCl2,

depicted as the dashed line in Figure 5. In this study, the TiCl2

feed was produced by the reaction of TiCl3 with metallic 

titanium. 

Synthesis of TiCl2

A titanium reaction container fabricated from titanium foil 

(99.9%, 0.2 mm thickness) was used for the experiment of TiCl2
synthesis. TiCl3 powder was mixed with titanium powder 

(99.7%) in a glove box, and the mixture placed in the titanium 

1/2 Cl2 (g)

Ti (s) Mg (l)

TiCl2 (s)

1073 K

TiCl3 (s)

TiCl4 (g)

MgCl2 (l)

Reductant

Exp. overall

composition

Reaction

pathways

Feed material

A

B

Route A:    2 TiCl3 + 3 Mg 2 Ti + 3 MgCl2
Route B: 2 TiCl3 + Ti      3 TiCl2

TiCl2 + Mg    Ti + MgCl2

Figure_5.___Phase diagram for the Ti–Mg–Cl system at 1073 K. 

Experimental reaction pathways for titanium production are also 

shown [11]. 

Stainless steel cell

TiClx powder

Mg lump

Ti reaction container

Thermocouple

Ar inlet/outlet

Stainless steel

condenser

Stainless steel

chamber

Stainless steel

vessel

Heating 

element

Alumina tube

(a)

(b)

T1 T2

Figure_6.___Schematic illustrations of the experimental 

apparatus for the magnesiothermic reduction of TiClx: (a) 

arrangement of the reduction chamber, (b) magnified picture of 

the reaction vessel at the bottom of the reduction chamber. 

reaction container was loaded into a stainless steel vessel. 

Subsequently, the stainless steel vessel was placed in a gas-tight 

stainless steel chamber and heated to 1073 K in an argon 

atmosphere. After the experiment, the sample was recovered 

from the titanium reaction container in the glove box and was 

subjected to analysis. Phases in the sample were identified using 

X-ray diffraction (XRD) analysis, and the composition of the 

sample was determined using inductively coupled 

plasma-atomic emission spectroscopy (ICP-AES) and the 

potentiometric titration method. 

Magnesiothermic reduction of TiClx

Figure 6 shows a representative arrangement of the 

experimental apparatus used for titanium production by the 

magnesiothermic reduction of TiClx. A titanium reaction 

container fabricated from titanium foil (99.9%, 0.1~0.2 mm 

thickness) and/or a titanium tube (99.9%, 1 mm thickness) was 

used. TiClx powder (5.97~102 g) was loaded in the reaction 

container with the magnesium lump (99.9%, 1.47~22.5 g) in a 

glove box (O2 and H2O level is maintained below 1 ppm), and 

1~4 sets of the container were set in a stainless steel vessel. 

Subsequently, the stainless steel vessel was placed in a gas-tight 

stainless steel chamber that was connected to a stainless steel 

condenser. Thermocouples were placed in the center of (inside 

temperature, T1) and outside (outside temperature, T2) the 

reaction container, and the transition of temperature during the 

experiment was monitored. The sample was heated to 1073 K 

and was maintained at this temperature for 10 min in an argon 

atmosphere. In some experiments, following the reduction 

experiment, the reaction container was cooled down to ambient 

temperature, and the sample in the container was mechanically 
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recovered. The by-product MgCl2 and the excess magnesium in 

the sample were removed by leaching, and the obtained titanium 

deposit was subjected to analysis. In another series of 

experiments, the stainless steel chamber was evacuated 

following the reduction experiment and the sample was heated 

to 1273 K to remove the by-product MgCl2 and excess 

magnesium. After the sample temperature reached 1273 K, the 

vacuum distillation process was terminated and the sample was 

cooled to ambient temperature in an argon atmosphere. The 

sample was then mechanically recovered and subjected to 

analysis. The phases in the sample were identified using XRD 

analysis, and the composition of the sample was determined by 

X-ray fluorescence analysis (XRF). The morphology of the 

sample was observed by scanning electron microscopy (SEM). 

Results and discussion 

Synthesis of TiCl2

Using XRD, the black powder obtained after the TiCl2 synthesis 

experiment was identified as TiCl2 (JCPDS: 10-0315 and 

73-0751). The composition of chlorine in TiCl2 was determined 

to be x = 2.00~2.28 (TiClx) using the potentiometric titration 

method. It is worth noting that the titanium reaction container 

was not damaged and its original shape was preserved. 

Magnesiothermic reduction of TiClx

The sample temperature (T1) monotonically rose in all the 

experiments until it reached 973 K. Figure 7 (a) shows the 

representative result of the transition of the sample temperature 

after it reached 973 K during magnesiothermic reduction of 

TiCl3, while Figure 7 (b) shows that of TiCl2. As shown in 

Figure 7 (a) and (b), temperature T1 rapidly rose after 973 K and 

then lowered, indicating that the exothermic magnesiothermic 

reduction of TiClx proceeded at a high speed within 200 s. There  
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Figure_7.___Representative result of the transition of sample 

temperature during the magnesiothermic reduction of (a) TiCl3,

(b) TiCl2.

TiCl3 powder

Mg lump

(b)   Initial setup of (a)

10 mm

(a)   Sectioned reaction container

after reduction (without leaching)

MgCl2 drain zone

Stainless steel cell

Ti reaction container

(a)

Porous Ti

Ti reaction

container

Drained

MgCl2

Figure_8.___Sectioned titanium reaction vessel after the 

experiment for the magnesiothermic reduction of TiCl3: (a) 

photograph of obtained sample, (b) initial setup of the reaction 

vessel. 

was a two-step rise in the temperature on the magnesiothermic 

reduction of TiCl3, whereas there was a one-step rise in the 

temperature on the magnesiothermic reduction of TiCl2. These 

results indicate that the reduction process of TiCl3 proceeded by 

the following two-step reaction; 

2 TiCl3 + Mg  2 TiCl2 + MgCl2 (1)

TiCl2 + Mg  Ti + MgCl2 (2)

When a large amount of TiCl3 was charged, a two-step 

temperature change was not observed. The authors are currently 

analyzing the reduction pathways during the metallothermic 

reduction of titanium subhalides. 

Figure 8 (a) is a representation of the sectioned container after 

the reduction experiment (prior to leaching). As shown in Figure 

8, porous titanium metal was formed in the upper part of the 

container in the experiments. It is worth noting that the titanium 

reaction container was not damaged. This result shows the 

titanium container can be applicable to the magnesiothermic 

reduction of TiClx. In the experiment shown in Figure 8, MgCl2

and magnesium were drained into the bottom of the container, 

and were separated from the titanium product. The authors are 

currently employing a method to establish a more efficient 

separation process by the combination of both draining and 

vacuum distillation. At this stage, titanium sponge with 99.8% 

purity was successfully obtained. 

Figure 9 shows the SEM image of the obtained titanium sample 

after the by-product was removed by leaching. In the 

experiment for the magnesiothermic reduction of TiCl3, titanium 

metal with a coral-like structure, shown in Figure 9 (a),  
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(a)

(b)

10 m

10 m

Figure_9.___Scanning electron micrograph of the obtained 

titanium on experiment for magnesiothermic reduction of: (a) 

TiCl3, (b) TiCl2.

consisting of tightly combined primary particles with diameters 

of 1~5 m, was obtained. Figure 9 (b) shows the SEM image of 

the obtained titanium sample after the magnesiothermic 

reduction of TiCl2. No significant difference was observed 

between the titanium samples obtained from the 

magnesiothermic reduction of TiCl3 and TiCl2, and in both cases, 

deposits with coral-like structures were obtained. In case of 

titanium sample after the removal of the by-product by vacuum 

distillation, the neck of each primary particle in the titanium 

sample grew. Platy structure made of primary particles, which 

had lost their round shape, and jagged primary particles were 

also observed in some experiments. This result shows that the 

sintering of the primary particle proceeded in the dry separation 

process. The mechanism of neck formation of primary particle 

is currently under investigation. 

Conclusions

Fundamental research was conducted in order to develop a new 

high-speed, semi-continuous titanium production process by 

subhalide reduction to obtain high-purity titanium, and the 

feasibility of the process was also demonstrated. TiCl2 was 

synthesized by the reaction of TiCl3 with metallic titanium. The 

experiment for the magnesiothermic reduction of titanium 

subhalide, either TiCl3 or TiCl2, was carried out, and titanium 

with 99.8% purity was successfully obtained. The reaction 

container made of titanium was demonstrated to be applicable to 

the magnesiothermic reduction of titanium subhalide, and the 

by-product was shown to be efficiently removed by combining 

both draining and vacuum distillation. The authors are currently 

developing a process for the production of TiClx from TiCl4 and 

the enrichment process of TiClx with the aim of establishing a 

high-speed semi-continuous titanium production process. 
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