NEW TITANIUM PRODUCTION PROCESS BY MAGNESIOTHERMIC REDUCTION OF TITANIUM SUBHALIDES

Osamu Takeda* and Toru H. Okabe

Institute of Industrial Science, University of Tokyo, * Graduate Student, Graduate School of Engineering, University of Tokyo

Introduction>

Amount of titanium sponge production [kt]

Experimental>

TiCl₄ Ma & MaCla recovery port Electric heater Sponge Ti Mild steel chamber Mg & MgCl₂ Chlorination: $TiO_2 + C + 2 Cl_2 \rightarrow TiCl_4 + CO_2$

Reduction: $TiCl_4 + 2 Mg$ → Ti + 2 MgCl₂ Electrolysis: MgCl₂ \rightarrow Mg + Cl₂

Feature OHigh purity titanium available ©Effective metal / salt separation

TiCl₂ (s)

TiCl₂ (s)

Ti (s)

distillation

20

Fe Ni Cr Mg

0.50 0.01 0.02 0.09 0.21 87

Ti

(1997) pp. 610-618.)

OEstablished chlorine circulation OUtilizes efficient Mg electrolysis OReduction and electrolysis operation can be carried out independently

New titanium production process

(1)TiCl₄(I, g) + Mg (I, g) → TiC

using titanium su	and new process		
$\text{TiCl}_4(I, g) + \text{Mg}(I, g) \rightarrow \frac{\text{TiCl}_x}{\text{TiCl}_x}(s, I) + \text{MgCl}_2(I)$			Kroll process
TiCl₄(l, g) + Ti (s, scrap) → Ti <mark>Cl</mark> ₄ (s, l)		Process	Batch,
		type	low speed
$\frac{\text{FiCl}_{x}(s, l) + \text{Mg}(l, g) \rightarrow \text{Ti}(s) + \text{MgCl}_{2}(l, g)}{\text{FiCl}_{x}(s, l) + \text{MgCl}_{2}(l, g)}$		Feed material	TiCl ₄ (l, g)
MgCl₂ −TiClx TiClx	Step 1: High speed production of Ti sub-chlorides, and enrichment of TiCl _x	Heat of reduction, <u>AH°</u> / kJ molTi	- 434
			(Huge heat)
		Reactor material	Mild steel (Iron contamination unavoidable)
e_Induction	Step 2: High speed	Reactor size	Large (Crush and melt)
		Flux, sealant	No use

Magnesiothermic reduction of chloride. Removal of MgCl₂ and Mg from Ti sponge by draining and vacuum distillation. Common features Ti with low oxygen is produced.

Comparison of the Kroll process

This study

(Semi-)Continuous.

TiCl₂ or TiCl₃ (s, I)

Titanium (No iron

Small (No crush and

contamination)

direct melt

MaCl_a, Ti

high speed

- 94 ~ - 191

(Small heat)

 Purpose of this study: Establishment of continuous and high speed titanium reduction process based on magnesiothermic reduction of titanium sub-chlorides

2TiCl₃ + 3Mg → 2Ti + 3MgCl₂

Transition of sample temperature

Lemper 008 750 T ю. 700 200 600 800 1000 400 600 Time. Δt / s 1000 Vacuum distillation ပ ⁹⁵⁰ , 1 900 Lemperature, 800 . Ng(l) -→ Mg(g) MgCl₂(I) → 750 T_{2} 700 1000 2000 3000 4000 Time At/s Magnesiothermic reduction of TiCl₃

Fia apparatus for magnesiothermic reduction of TiCl₃, (b) inner setup of reaction vessel, (c) vessel arrangement

 Control experiment for evaluation of iron contamination from crucible New titanium production process

Fia. (a) SEM image of sectioned crucible after reduction experiment. (b) element concentration profile across the boundary between stainless steel crucible and Ti deposit. Iron contamination from stainless steel crucible is unavoidable.

proceeded at high speed

Conclusion>

based on magnesiothermic reduction of titanium subhalides was proposed, and its feasibility was demonstrated. In detail...

- High speed magnesiothermic reduction of TiCl₃ was carried out, and possibility for developing high speed reduction process was demonstrated.
- Pathway for supplying Mg reductant to TiCl₃ feed was found to be important.
- •Ti crucible was shown to be applicable to magnesiothermic reduction of TiCl₃, and new anticontamination process was proposed.

Currently, we are developing advanced processes (eg. TiCl₂ production) for new titanium production process.

(b)

Exp. Over all

composition

VN Ma (I)

•: α-Ti (PDF: 44-1294)

100

Yield

(%)

A

Fig. Phase diagram for the Ti-Mg-Cl system at 1073 K. (Ref. Okabe et al.: J. Japan Inst. Metals 61

Procedure: TiCl₃ and Mg set into a titanium vessel were heated in Ar atmosphere, and the

temperature change by magnesiothermic

reduction of TiCl₃ was monitored. After the

were removed by draining and vacuum

reduction, excess Mg and by-product MgCl₂

Angle, 2*θ* (degree)

Reductant