RECYCLING PROCESS FOR TANTALUM AND SOME OTHER METAL SCRAPS

Ryosuke Matsuoka¹, Kunio Mineta¹, Toru H. Okabe²

¹Graduate student, Graduate School of Engineering, University of Tokyo, Tokyo, Japan

> ²Institute of Industrial Science, University of Tokyo, Tokyo, Japan

2004 Annual Meeting; March 14-18, 2004 — Charlotte, NC, USA

Introduction

*1) Michael Lauri:

"Capacitor Trends in the Computer Industry", Proceedings of TIC Meeting 2000, Monday Oct. 23rd 2000 San Francisco, US.

Purpose of this research

- Large amount of off-spec
 Ta capacitors are generated during the manufacturing process.
- No effective recycling process (Actually scraps are treated as Ta ore)
 Ta capacitor scraps are high quality Ta resource which do not contain any Nb.

Ta recycling is important from the view point of resource preservation, minimization of waste materials, and saving energy for recycling.

Development of an effective process for Ta recovery from capacitor scraps.

Structure of Ta capacitor

Fireproof epoxy resin Polymer including SiO₂

Sintered Ta electrode <u>Content of Ta is 90 mass%</u> <u>or higher.</u>

Terminal Fe, Ni, Cu...

Fig. Schematic illustration of tantalum capacitor.

Ta exists in the sintered Ta electrode

Separation of sintered electrode out of the scrap is important issue

MS 2004 Annual Meeting; March 14-18, 2004 — Charlotte, NC, USA

Ta recovery process

Fig. Flowchart of the recovery process for tantalum from capacitor scraps.

^{*1)}K. Mineta and T. H. Okabe:

"Development of a Recycling Process for Tantalum from capacitor Scraps," International IUPAC Conference on High Temperature Materials Chemistry -XI Abstract, Tokyo, Japan, 19-23 May (2003), 150.

5

Results of the recovery process

Fig. (a) XRD pattern of tantalum recovered from capacitor scraps, and (b) reference pattern of tantalum reported by JCPDS.

Fig. SEM image of Ta recovered from capacitor scraps.

Table	Analytical result of tantalum powder recovered from tantalum capacitor scraps
	determined by ICP-AES analysis. The parenthetic data is estimated value.

	Concentration of element i, C _i (mass %)					
	Та	Si	Cu	Ag	Fe	Mn
Capacitor scrap	(40 ~	50) (10 ~ 20)	(~ 5)	(-)	(5 ~ 10)) (-)
Recovered TaO _x	(80)	()	(-)	(-)	(-)	(-)
Obtained Ta powder	98.57	0.93	0.07	0.16	0.25	0.02

^{*1}: Value determined by balancing the analyzed solute concentration.

- After reduction, 99 % purity of Ta was obtained.
- The yield of the process was 90 ~ 92 %.

Further Ta purification process is required, for use in electronic industry.

Chlorination reaction using chloride scraps from the Kroll process

MS 2004 Annual Meeting; March 14-18, 2004 — Charlotte, NC, USA

Wastes from the Kroll process

Kroll process : Ti production process

Chlorination · · · Chlorination of Ti ore TiO₂ (+ FeO_x) + C + 2 Cl₂ \rightarrow TiCl₄ (+ FeCl_x) +CO₂

Reduction ··· · Reduction of TiCl₄ using Mg

 $TiCl_4 + 2 Mg \rightarrow Ti + 2 MgCl_2$

Electrolysis \cdots Electrolysis of MgCl₂ MgCl₂ \rightarrow Mg + Cl₂

Upgrading Ti ore for minimizing chloride wastes

Ti ore (eg. Ilmenite) Up-graded Ilmenite (UGI)

Large amount of chloride wastes (eg. FeCl_x) are produced in the Kroll process.

Importance

- 1. Reduction of disposal cost of chloride wastes
- 2. Minimizing chlorine loss in the Kroll process
- 3. Improvement of environmental burden

7

Refining process using FeCl_x

Advantages:

- 1. Utilizing chloride wastes from Kroll process
- 2. Low cost Ta chlorination
- 3. Minimizing chlorine loss in the Kroll process caused by generation of chloride wastes

Effective utilization of chloride wastes

Development of a new environmentally sound chloride metallurgy

Fig. Chemical potential diagram for Ta-Cl-O system under constant chlorine partial pressure.

When C or CO is introduced in the system, chlorination of Ta_2O_5 proceeds and $TaCl_5$ (g) generates under high Cl_2 partial pressure.

Thermodynamic analysis (vapor pressure)

Fig. Vapor pressure of the chlorides of iron, tantalum, and silicon as a function of reciprocal temperature.

The separation of chlorides and the recovery of high-purity $TaCl_5(g)$ is possible by controlling deposition temperature.

Thermodynamic analysis (Ta chlorination)

Fig. Isothermal chemical potential diagram for Ta-Cl-O system at 900 K.

Chlorination of Ta_2O_5 proceeds, when C or CO is introduced in the system.

Although Ta_2O_5 is stable under Fe / FeCl₂ equilibrium, chlorination of Ta_2O_5 may proceed by reducing total pressure, because vapor pressure of $TaCl_5$ is high.

Chlorination of Ta

2 Ta (s) + 5 FeCl₂ (s,g) = 2 TaCl₅ (g) + 5 Fe (s) (or Fe₂Ta (s))

Fig. Three-dimensional chemical potential diagram of Ta-Fe-Cl system at 900 K.

TaCl₅ can be generated by reacting Ta and FeCl₂ or FeCl₃.

Chlorination of Ta using FeCl₂

$2 \text{ Ta}(s) + 5 \text{ FeCl}_2(s) = 2 \text{ TaCl}_5(g) + 5 \text{ Fe}(s)$

Experimental apparatus

Fig. Experimental apparatus for chlorination using $FeCl_2$ as a chlorine source.

Experimental condition

T = 900 K, t^{2} = 3 h, Ar atmosphere, Ta: 2 g, FeCl₂: 10 g

Results

2 Ta (s) + 5 FeCl₂(s) = 2 TaCl₅(g) + 5 Fe (s)XRD analysis

Conclusions

- Ta₂O₅ powder was obtained from capacitor scrap by the oxidation of the Ta capacitor in air, followed by mechanical and chemical treatment.
- 2. Ta with 99% purity was produced by a magnesiothermic reduction of the obtained Ta_2O_5 powder. Si was the major impurity.
- 3. The chlorination reaction of Ta and Ta₂O₅ by FeCl_x was investigated, and iron free TaCl₅ was successfully obtained.

- 1. The development of an effective recovery process of high-purity Ta from Ta capacitor scraps.
- 2. The application of chlorination reactions to some other metal scraps using chloride wastes. Chlorine recovery from chloride waste by Ti scrap is currently under investigation.

